Detection and position evaluation of chest percutaneous drainage catheter on chest radiographs using deep learning

被引:0
|
作者
Kim, Duk Ju [1 ]
Nam, In Chul [1 ]
Kim, Doo Ri [1 ]
Kim, Jeong Jae [1 ]
Hwang, Im-kyung [1 ]
Lee, Jeong Sub [1 ]
Park, Sung Eun [2 ,3 ]
Kim, Hyeonwoo [4 ]
机构
[1] Jeju Natl Univ, Jeju Natu Univ Hosp, Sch Med, Dept Radiol, Jeju, South Korea
[2] Gyeongsang Natl Univ, Sch Med, Dept Radiol, Chang Won, South Korea
[3] Gyeongsang Natl Univ, Changwon Hosp, Chang Won, South Korea
[4] Upstage AI, Yongin, Gyeonggi Do, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 08期
关键词
TUBE MALPOSITION;
D O I
10.1371/journal.pone.0305859
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose This study aimed to develop an algorithm for the automatic detecting chest percutaneous catheter drainage (PCD) and evaluating catheter positions on chest radiographs using deep learning.Methods This retrospective study included 1,217 chest radiographs (proper positioned: 937; malpositioned: 280) from a total of 960 patients underwent chest PCD from October 2017 to February 2023. The tip location of the chest PCD was annotated using bounding boxes and classified as proper positioned and malpositioned. The radiographs were randomly allocated into the training, validation sets (total: 1,094 radiographs; proper positioned: 853 radiographs; malpositioned: 241 radiographs), and test datasets (total: 123 radiographs; proper positioned: 84 radiographs; malpositioned: 39 radiographs). The selected AI model was used to detect the catheter tip of chest PCD and evaluate the catheter's position using the test dataset to distinguish between properly positioned and malpositioned cases. Its performance in detecting the catheter and assessing its position on chest radiographs was evaluated by per radiographs and per instances. The association between the position and function of the catheter during chest PCD was evaluated.Results In per chest radiographs, the selected model's accuracy was 0.88. The sensitivity and specificity were 0.86 and 0.92, respectively. In per instance, the selected model's the mean Average Precision 50 (mAP50) was 0.86. The precision and recall were 0.90 and 0.79 respectively. Regarding the association between the position and function of the catheter during chest PCD, its sensitivity and specificity were 0.93 and 0.95, respectively.Conclusion The artificial intelligence model for the automatic detection and evaluation of catheter position during chest PCD on chest radiographs demonstrated acceptable diagnostic performance and could assist radiologists and clinicians in the early detection of catheter malposition and malfunction during chest percutaneous catheter drainage.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Automated estimation of total lung volume using chest radiographs and deep learning
    Sogancioglu, Ecem
    Murphy, Keelin
    Scholten, Ernst Th
    Boulogne, Luuk H.
    Prokop, Mathias
    van Ginneken, Bram
    MEDICAL PHYSICS, 2022, 49 (07) : 4466 - 4477
  • [42] Deep Learning Systems for Pneumothorax Detection on Chest Radiographs: A Multicenter External Validation Study
    Thian, Yee Liang
    Ng, Dianwen
    Hallinan, James Thomas Patrick Decourcy
    Jagmohan, Pooja
    Sia, Soon Yiew
    Tan, Cher Heng
    Ting, Yong Han
    Kei, Pin Lin
    Pulickal, Geoiphy George
    Tiong, Vincent Tze Yang
    Quek, Swee Tian
    Feng, Mengling
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
  • [43] Observer performance evaluation of the feasibility of a deep learning model to detect cardiomegaly on chest radiographs
    Ajmera, Pranav
    Kharat, Amit
    Gupte, Tanveer
    Pant, Richa
    Kulkarni, Viraj
    Duddalwar, Vinay
    Lamghare, Purnachandra
    ACTA RADIOLOGICA OPEN, 2022, 11 (07)
  • [44] Deep Learning to Estimate Biological Age From Chest Radiographs
    Raghu, Vineet K.
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) : 2226 - 2236
  • [45] DEEP FEATURE DISENTANGLEMENT LEARNING FOR BONE SUPPRESSION IN CHEST RADIOGRAPHS
    Lin, Chunze
    Tang, Ruixiang
    Lin, Darryl D.
    Liu, Langechuan
    Lu, Jiwen
    Chen, Yunqiang
    Gao, Dashan
    Zhou, Jie
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 795 - 798
  • [46] Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs
    Lee, Seowoo
    Yim, Jae-Joon
    Kwak, Nakwon
    Lee, Yeon Joo
    Lee, Jung-Kyu
    Lee, Ji Yeon
    Kim, Ju Sang
    Kang, Young Ae
    Jeon, Doosoo
    Jang, Myoung-jin
    Goo, Jin Mo
    Yoon, Soon Ho
    RADIOLOGY, 2021, 301 (02) : 435 - 442
  • [47] Comparing different deep learning architectures for classification of chest radiographs
    Bressem, Keno K.
    Adams, Lisa C.
    Erxleben, Christoph
    Hamm, Bernd
    Niehues, Stefan M.
    Vahldiek, Janis L.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [48] Comparing different deep learning architectures for classification of chest radiographs
    Keno K. Bressem
    Lisa C. Adams
    Christoph Erxleben
    Bernd Hamm
    Stefan M. Niehues
    Janis L. Vahldiek
    Scientific Reports, 10
  • [49] Deep Learning Prediction of Cardiac Chamber Enlargement on Chest Radiographs
    Davila, David M.
    Barnawi, Rashid
    Masoudi, Samira
    Mahmoodi, Amin
    Hsiao, Albert
    Hahn, Lewis
    CIRCULATION, 2023, 148
  • [50] Deep Learning to Assess Cardiovascular Age From Chest Radiographs
    Raghu, Vineet
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo
    Lu, Michael T.
    CIRCULATION, 2020, 142