Cu-trimesate and mesoporous silica composite as adsorbent showing enhanced CO2/CH4 and CO2/N2 selectivity for biogas and flue gas separation

被引:0
|
作者
Dalakoti, Suman [1 ,2 ]
Singh, Narendra [1 ,2 ]
Sharma, Anjali [1 ,2 ]
Singh, Anjali [1 ]
Sachdeva, Madhur [1 ]
Divekar, Swapnil [1 ,2 ]
Arya, Aarti [1 ,2 ]
Murali, R. Surya [1 ,2 ]
Dasgupta, Soumen [1 ,2 ]
机构
[1] CSIR Indian Inst Petr, Separat Proc Div, Adsorpt & Membrane Separat Area, Dehra Dun 248005, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Metal-organic framework; Mesoporous silica; Composite; Gas separation; Flue gas; Biogas; IAST binary selectivity; CO2/CH4; CO2/N2; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE SEPARATION; ADSORPTION; MOF; EFFICIENT; PERFORMANCES; CAPTURE; METHANE; CH4/N-2; ZIF-8;
D O I
10.1016/j.micromeso.2024.113354
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Due to their diverse structure, high porosity, and tunable functionality, Metal-Organic Frameworks (MOFs) hold great potential as materials for diverse applications, including gas separation. Material science researchers are focusing on creating flexible materials that have special properties. Most of the latest research mainly concentrates on fabricating composite materials of MOFs and other functional materials. These MOF-based composites can mitigate the limitations of pure MOFs and may even perform better than the individual components. Here, we present a systematic study on the effect of solvent in synthesising a composite (Cu-BTC@SBA-15) of Cutrimesate MOF (aka CuBTC) and ordered mesoporous silica SBA-15, showing considerable improvement in selectivity for CO2 adsorption from the flue gas and biogas. The pristine Cu-BTC, SBA-15 and the composites with different content of Cu-BTC were characterized by PXRD, BET, FT-IR, SEM, TEM and TGA techniques. The pure gas adsorption isotherms were measured for CO2, CH4, and N2 gases. Ideal Adsorbed Solution Theory (IAST) is used for the binary selectivity calculations for gas systems such as CO2/CH4 and CO2/N2 in the context of biogas and flue gas separation. The composite exhibited an increase in CO2/CH4 selectivity by 39 % compared to pure Cu-BTC and 85 % compared to pure SBA-15. For the CO2/N2 system, the composite showed 38 % higher selectivity than Cu-BTC. The work has significance in the design of effective MOF-based composites for CO2 separation. Our work might open up a new route to design multifunctional materials for worldwide applications through an adsorptive and or mixed matrix membrane route.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    A. A. Sizova
    S. A. Grintsevich
    M. A. Kochurin
    V. V. Sizov
    E. N. Brodskaya
    Colloid Journal, 2021, 83 : 372 - 378
  • [12] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    Sizova, A. A.
    Grintsevich, S. A.
    Kochurin, M. A.
    Sizov, V. V.
    Brodskaya, E. N.
    COLLOID JOURNAL, 2021, 83 (03) : 372 - 378
  • [13] Effective synthesis route of renewable activated biocarbons adsorbent for high CO2, CH4, H2, N2, C2H4 gas storage and CO2/N2, CO2/CH4, CO2/H2, C2H4/CH4 selectivity
    Serafin, Jaroslaw
    Dziejarski, Bartosz
    Rodriguez-Estupinan, Paola
    Fernandez, Valentina Bernal
    Giraldo, Liliana
    Srenscek-Nazzal, Joanna
    Michalkiewicz, Beata
    Moreno-Pirajan, Juan Carlos
    FUEL, 2024, 374
  • [14] Tailoring pores of AFN-related zeolites for enhanced separation of CO2/N2 and CO2/CH4
    Yang, Yining
    Zhou, Yida
    Zhang, Borong
    Zhang, Maosheng
    Shi, Zhaohui
    Liu, Yunling
    Li, Jiyang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 350
  • [15] Hyper-crosslinked aromatic polymers with improved microporosity for enhanced CO2/N2 and CO2/CH4 selectivity
    Chen, Dongyang
    Gu, Shuai
    Fu, Yu
    Fu, Xianbiao
    Zhang, Yindong
    Yu, Guipeng
    Pan, Chunyue
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (14) : 6834 - 6839
  • [16] Enhanced CO2 Adsorption and CO2/N2/CH4 Selectivity of Novel Carbon Composites CPDA@A-Cs
    Liang, Wanwen
    Liu, Zewei
    Peng, Junjie
    Zhou, Xin
    Wang, Xun
    Li, Zhong
    ENERGY & FUELS, 2019, 33 (01) : 493 - 502
  • [17] N-doped sponge-like biochar: A promising CO2 sorbent for CO2/CH4 and CO2/N2 gas separation
    Lourenco, Mirtha A. O.
    Frade, Tania
    Bordonhos, Marta
    Castellino, Micaela
    Bocchini, Sergio
    Pinto, Moises L.
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [18] A charged metal-organic framework for CO2/CH4 and CO2/N2 separation
    Zhong, Ruiqin
    Xu, Zhilong
    Bi, Wenzhu
    Han, Songbai
    Yu, Xiaofeng
    Zou, Ruqiang
    INORGANICA CHIMICA ACTA, 2016, 443 : 299 - 303
  • [19] Supramolecular Metal-Organic Framework for CO2/CH4 and CO2/N2 Separation
    Dai, Juanjuan
    Xie, Danyan
    Liu, Ying
    Zhang, Zhiguo
    Yang, Yiwen
    Yang, Qiwei
    Ren, Qilong
    Bao, Zongbi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (16) : 7866 - 7874
  • [20] Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite
    Mulgundmath, V. P.
    Tezel, F. H.
    Saatcioglu, T.
    Golden, T. C.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 90 (03): : 730 - 738