Zeolite Encapsulation to Enhance Interfacial Gas Availability for Photocatalytic Hydrogen Peroxide Production

被引:0
|
作者
Cao, Bei [1 ,2 ,3 ]
Liu, Yifeng [5 ]
Zhao, Yue [1 ,2 ]
Qu, Jiangshan [6 ]
Zhou, Qin [1 ,2 ,3 ]
Xiao, Fengshou [4 ,5 ]
Li, Can [1 ,2 ,3 ]
Wang, Liang [4 ,5 ]
Li, Rengui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Zhejiang Baima Lake Lab, Hangzhou 311121, Peoples R China
[5] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[6] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Res Resources, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
zeolite; hydrogen peroxide; interfacial gas availability; photocatalysis; oxygen reduction; ADVANCED OXIDATION PROCESSES; H2O2; PRODUCTION; CATALYSTS; WATER;
D O I
10.1002/anie.202422495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals. This encapsulation results in a significant enhancement in H2O2 synthesis efficiency, achieving a yield that is ten times greater than that with unencapsulated TiO2. Mechanism study reveals that gaseous oxygen is notably concentrated within the microporous structure of the zeolite under aqueous conditions, thereby facilitating its interaction with the titania surface at the liquid-solid interface. In addition, the H2O2 product could swiftly transfer through the micropores, thereby reducing the side reaction of decomposition. This design provides an alternative pathway to address the poor gas solubility of gaseous reactants in water, and paves the way for advancements in various other photocatalytic processes.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Trace water triggers high-efficiency photocatalytic hydrogen peroxide production
    Xu, Zaixiang
    Li, Yang
    Cao, Yongyong
    Du, Renfeng
    Bao, Zhikang
    Zhang, Shijie
    Shao, Fangjun
    Ji, Wenkai
    Yang, Jun
    Zhuang, Guilin
    Deng, Shengwei
    Wei, Zhongzhe
    Yao, Zihao
    Zhong, Xing
    Wang, Jianguo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 64 : 47 - 54
  • [32] Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production
    Gao, Tengyang
    Zhao, Degui
    Yuan, Saisai
    Zheng, Ming
    Pu, Xianjuan
    Tang, Liang
    Lei, Zhendong
    CARBON ENERGY, 2024, 6 (11)
  • [33] Electronic Tuning of Metal Nanoparticles for Highly Efficient Photocatalytic Hydrogen Peroxide Production
    Chu, Chiheng
    Huang, Dahong
    Zhu, Qianhong
    Stavitski, Eli
    Spies, Jacob A.
    Pan, Zhenhua
    Mao, Jing
    Xin, Huolin L.
    Schmuttenmaer, Charles A.
    Hu, Shu
    Kim, Jae-Hong
    ACS CATALYSIS, 2019, 9 (01) : 626 - 631
  • [34] Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production
    Chai, Shuming
    Chen, Xiaowen
    Zhang, Xirui
    Fang, Yuanxing
    Sprick, Reiner Sebastian
    Chen, Xiong
    ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (07) : 2464 - 2469
  • [35] High-Efficiency Photocatalytic Hydrogen Peroxide Production on BiOCl/BiOBr Heterojunction
    Zhang, Qing
    Xie, Yan
    Fu, Hanping
    Ren, Shufen
    Cheng, Jiayun
    Liang, Qingshuang
    Xiao, Xiufeng
    CHEMISTRYSELECT, 2025, 10 (08):
  • [36] Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production
    Kondo, Yoshifumi
    Kuwahara, Yasutaka
    Mori, Kohsuke
    Yamashita, Hiromi
    CHEM, 2022, 8 (11): : 2924 - 2938
  • [37] Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production
    Sun, Jiamin
    Jena, Himanshu Sekhar
    Krishnaraj, Chidharth
    Rawat, Kuber Singh
    Abednatanzi, Sara
    Chakraborty, Jeet
    Laemont, Andreas
    Liu, Wanlu
    Chen, Hui
    Liu, Ying-Ya
    Leus, Karen
    Vrielinck, Henk
    Van Speybroeck, Veronique
    Van Der Voort, Pascal
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (19)
  • [38] Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers
    Shengdong Wang
    Zhipeng Xie
    Da Zhu
    Shuai Fu
    Yishi Wu
    Hongling Yu
    Chuangye Lu
    Panke Zhou
    Mischa Bonn
    Hai I. Wang
    Qing Liao
    Hong Xu
    Xiong Chen
    Cheng Gu
    Nature Communications, 14
  • [39] Trace water triggers high-efficiency photocatalytic hydrogen peroxide production
    Zaixiang Xu
    Yang Li
    Yongyong Cao
    Renfeng Du
    Zhikang Bao
    Shijie Zhang
    Fangjun Shao
    Wenkai Ji
    Jun Yang
    Guilin Zhuang
    Shengwei Deng
    Zhongzhe Wei
    Zihao Yao
    Xing Zhong
    Jianguo Wang
    Journal of Energy Chemistry, 2022, 64 (01) : 47 - 54
  • [40] Amidation crosslinking of polymeric carbon nitride for boosting photocatalytic hydrogen peroxide production
    Hu, Qiyu
    Dong, Yinjuan
    Ma, Kangwei
    Meng, Xiangyu
    Ding, Yong
    JOURNAL OF CATALYSIS, 2022, 413 : 321 - 330