Transformer-Based Multiscale 3-D Convolutional Network for Motor Imagery Classification

被引:0
|
作者
Su, Jingyu [1 ]
An, Shan [1 ]
Wang, Guoxin [2 ,3 ]
Sun, Xinlin [1 ]
Hao, Yushi [1 ]
Li, Haoyu [1 ]
Gao, Zhongke [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310027, Peoples R China
[3] JD Hlth Int Inc, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Electroencephalography; Convolution; Kernel; Motors; Transformers; Three-dimensional displays; Electrodes; Convolutional neural networks; Decoding; Brain-computer interface (BCI); deep learning; electroencephalography (EEG); motor imagery (MI); TIME;
D O I
10.1109/JSEN.2025.3528009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the variability and nonstationarity of electroencephalography (EEG) signals across different recording scenarios and subjects, it is crucial to have methods with strong generalization capabilities that can effectively capture both temporal and spatial features while maintaining high accuracy. In this article, we introduce a Transformer-based multiscale 3-D-convolution network (TMCNet), a novel end-to-end deep learning model that integrates multiscale 3-D convolutional neural networks with the Transformer for enhanced feature extraction. First, the temporal convolution is applied to EEG signals to extract detailed temporal features. Then, we utilize multiscale 3-D convolutional branches to perform spatial convolution, capturing spatial information across diverse receptive fields. In the second stage, we utilize the multihead attention mechanism in the Transformer to extract more refined global features, with fully connected layers used for classification. We evaluate the proposed method on three publicly available datasets. In cases where the datasets contain information for two sessions, we conduct evaluations for both within-session and cross-session scenarios. The experimental results demonstrate that the proposed TMCNet exhibits advanced performance, showcasing strong decoding ability and robustness.
引用
收藏
页码:8621 / 8630
页数:10
相关论文
共 50 条
  • [21] Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation
    Li M.
    Wei L.
    Journal of Shanghai Jiaotong University (Science), 2024, 29 (06) : 958 - 966
  • [22] UNFOLD: 3-D U-Net, 3-D CNN, and 3-D Transformer-Based Hyperspectral Image Denoising
    Dixit, Aditya
    Gupta, Anup Kumar
    Gupta, Puneet
    Srivastava, Saurabh
    Garg, Ankur
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 10
  • [23] 3D Convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification
    Xiuling Liu
    Kaidong Wang
    Fengshuang Liu
    Wei Zhao
    Jing Liu
    Cognitive Neurodynamics, 2023, 17 : 1357 - 1380
  • [24] 3D Convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification
    Liu, Xiuling
    Wang, Kaidong
    Liu, Fengshuang
    Zhao, Wei
    Liu, Jing
    COGNITIVE NEURODYNAMICS, 2023, 17 (05) : 1357 - 1380
  • [25] A 3-D Convolutional Vision Transformer for PolSAR Image Classification and Change Detection
    Wang, Lei
    Gui, Rong
    Hong, Hanyu
    Hu, Jun
    Ma, Lei
    Shi, Yu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11503 - 11520
  • [26] SSENet: A Multiscale 3-D Convolutional Neural Network for InSAR Shift Estimation
    Wu, Yulun
    Wang, Jili
    Zhang, Heng
    Zhao, Fengjun
    Xiang, Wei
    Li, Hongxiang
    Wang, Huaishuai
    An, Lianshuo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [27] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [28] Foreground Detection for Infrared Videos With Multiscale 3-D Fully Convolutional Network
    Wang, Yao
    Zhu, Liqiang
    Yu, Zujun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (05) : 712 - 716
  • [29] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chaoqin Chu
    Qinkun Xiao
    Leran Chang
    Jianing Shen
    Na Zhang
    Yu Du
    Heng Xing
    Hui Gao
    Multimedia Tools and Applications, 2023, 82 : 45747 - 45767
  • [30] EEG classification algorithm of motor imagery based on CNN-Transformer fusion network
    Liu, Haofeng
    Liu, Yuefeng
    Wang, Yue
    Liu, Bo
    Bao, Xiang
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1302 - 1309