Recent fluorination strategies in solid electrolytes for high-voltage solid-state lithium-ion batteries

被引:0
|
作者
Tang, An-Chun [1 ,2 ]
Hu, Er-Hai [1 ]
Jia, Bei-Er [1 ]
Wan, Chu-Bin [2 ]
Wen, Zi-Yue [1 ,3 ]
Tso, Shuen [1 ]
Ju, Xin [2 ]
Yan, Qing-Yu [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[4] ASTAR, Inst Mat Res & Engn IMRE, Singapore 138634, Singapore
来源
RARE METALS | 2025年
基金
中国国家自然科学基金;
关键词
Solid electrolytes; High-voltage; Fluorine chemistry; Solid-state lithium-ion batteries; Fluorinated interphase; POLYMER ELECTROLYTE; COMPOSITE ELECTROLYTES; INTERFACE STABILITY; CONDUCTIVITY; CHALLENGES; WATER; SALT;
D O I
10.1007/s12598-025-03244-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-voltage solid-state lithium-ion batteries (SSLIBs) have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics. However, the integration of high-voltage cathodes with solid electrolytes (SEs) presents multiple challenges, including the formation of high-impedance layers from spontaneous chemical reactions, electrochemical instability, insufficient interfacial contact, and lattice expansion. These issues significantly impair battery performance and potentially lead to battery failure, thus impeding the commercialization of high-voltage SSLIBs. The incorporation of fluorides, known for their robust bond strength and high free energy of formation, has emerged as an effective strategy to address these challenges. Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics, safety, and stability of rechargeable batteries, particularly under high voltage. This review summarizes recent advancements in fluorination treatment for high-voltage SEs, focusing on solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite solid electrolytes (CSEs), along with the performance enhancements these strategies afford. This review aims to provide a comprehensive understanding of the structure-property relationships, the characteristics of fluorinated interfaces, and the application of fluorinated SEs in high-voltage SSLIBs. Further, the impacts of residual moisture and the challenges of fluorinated SEs are discussed. Finally, the review explores potential future directions for the development of fluorinated SSLIBs.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries
    Liu, Xiaoyan
    Li, Xinru
    Li, Hexing
    Wu, Hao Bin
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18293 - 18306
  • [42] Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries
    Hu, Yilin
    Xie, Xiaoxin
    Li, Wei
    Huang, Qiu
    Huang, Hao
    Hao, Shu-Meng
    Fan, Li-Zhen
    Zhou, Weidong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (04) : 1253 - 1277
  • [43] Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries
    Hao Chen
    Mengting Zheng
    Shangshu Qian
    Han Yeu Ling
    Zhenzhen Wu
    Xianhu Liu
    Cheng Yan
    Shanqing Zhang
    Carbon Energy, 2021, 3 (06) : 929 - 956
  • [44] Fluorinated Superionic Oxychloride Solid Electrolytes for High-Voltage All-Solid-State Lithium Batteries
    Gao, Yingjie
    Zhang, Shumin
    Zhao, Feipeng
    Wang, Jian
    Zhou, Jigang
    Li, Weihan
    Deng, Sixu
    Fu, Jiamin
    Hao, Xiaoge
    Li, Ruying
    Sun, Xueliang
    ACS ENERGY LETTERS, 2024, 9 (04) : 1735 - 1742
  • [45] Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries
    Chen, Hao
    Zheng, Mengting
    Qian, Shangshu
    Ling, Han Yeu
    Wu, Zhenzhen
    Liu, Xianhu
    Yan, Cheng
    Zhang, Shanqing
    CARBON ENERGY, 2021, 3 (06) : 929 - 956
  • [46] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [47] Are solid-state batteries safer than lithium-ion batteries?
    Bates, Alex M.
    Preger, Yuliya
    Torres-Castro, Loraine
    Harrison, Katharine L.
    Harris, Stephen J.
    Hewson, John
    JOULE, 2022, 6 (04) : 742 - 755
  • [48] Recent advances of silicon-based solid-state lithium-ion batteries
    Chen, Xin
    Fu, Chuankai
    Wang, Yuanheng
    Yan, Jiaxin
    Ma, Yulin
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Gao, Yunzhi
    ETRANSPORTATION, 2024, 19
  • [49] Stress and Manufacturability in Solid-State Lithium-Ion Batteries
    Bin Mamtaz, Md Raziun
    Michaud, Xavier
    Jo, Hongseok
    Park, Simon S.
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2023, 10 (04) : 1093 - 1137
  • [50] Stress and Manufacturability in Solid-State Lithium-Ion Batteries
    Md Raziun Bin Mamtaz
    Xavier Michaud
    Hongseok Jo
    Simon S. Park
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1093 - 1137