Convergence analysis of regularised Nyström method for functional linear regression

被引:0
|
作者
Gupta, Naveen [1 ]
Sivananthan, S. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
基金
新加坡国家研究基金会;
关键词
functional linear regression; reproducing kernel Hilbert space; Nystr & ouml; m subsampling; regularization; covariance operator; KERNEL CONJUGATE-GRADIENT; NYSTROM METHOD;
D O I
10.1088/1361-6420/adbfb6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The functional linear regression model has been widely studied and utilized for dealing with functional predictors. In this paper, we study the Nystr & ouml;m subsampling method, a strategy used to tackle the computational complexities inherent in big data analytics, especially within the domain of functional linear regression model in the framework of reproducing kernel Hilbert space. By adopting a Nystr & ouml;m subsampling strategy, our aim is to mitigate the computational overhead associated with kernel methods, which often struggle to scale gracefully with dataset size. Specifically, we investigate a regularization-based approach combined with Nystr & ouml;m subsampling for functional linear regression model, effectively reducing the computational complexity from O(n3) to O(m2n), where n represents the size of the observed empirical dataset and m is the size of subsampled dataset. Notably, we establish that these methodologies will achieve optimal convergence rates, provided that the subsampling level is appropriately selected. We have also demonstrated numerical examples of Nystr & ouml;m subsampling in the reproducing kernel Hilbert space framework for the functional linear regression model.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] High-order nyström method for computing waveguide modes
    Ottusch, John J.
    Wandzura, Stephen M.
    Applied Computational Electromagnetics Society Journal, 2002, 17 (01): : 84 - 92
  • [42] ON THE CONVERGENCE OF PSEUDO-LINEAR REGRESSION ALGORITHMS
    STOICA, P
    SODERSTROM, T
    AHLEN, A
    SOLBRAND, G
    INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (06) : 1429 - 1444
  • [43] On Linear Convergence of ADMM for Decentralized Quantile Regression
    Wang, Yue
    Lian, Heng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 3945 - 3955
  • [44] Functional linear regression with derivatives
    Mas, Andre
    Pumo, Besnik
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (01) : 19 - 40
  • [45] Prediction in functional linear regression
    Cai, T. Tony
    Hall, Peter
    ANNALS OF STATISTICS, 2006, 34 (05): : 2159 - 2179
  • [46] ADAPTIVE FUNCTIONAL LINEAR REGRESSION
    Comte, Fabienne
    Johannes, Jan
    ANNALS OF STATISTICS, 2012, 40 (06): : 2765 - 2797
  • [47] Presmoothing in functional linear regression
    Martinez-Calvo, Adela
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 223 - 229
  • [48] PRESMOOTHING IN FUNCTIONAL LINEAR REGRESSION
    Ferraty, Frederic
    Gonzalez-Manteiga, Wenceslao
    Martinez-Calvo, Adela
    Vieu, Philippe
    STATISTICA SINICA, 2012, 22 (01) : 69 - 94
  • [49] A note on functional linear regression
    Baillo, Amparo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (05) : 657 - 669
  • [50] Bootstrap in functional linear regression
    Gonzalez-Manteiga, Wenceslao
    Martinez-Calvo, Adela
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 453 - 461