Observation of Lossless Topological Bound States from Non-Hermitian Subspaces

被引:0
|
作者
Li, Ze-Zheng [1 ,2 ]
Ke, Shao-Lin [2 ]
Yang, Ouyang [1 ]
Yu, Feng [1 ,4 ]
Jiang, Chuang [1 ,3 ]
Tian, Zhen-Nan [1 ]
Chen, Qi-Dai [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Wuhan Inst Technol, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instrum, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[4] BYD Automobile Ind Co Ltd, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
non-Hermitian photonics; topological bound states; topological subspaces; waveguide arrays; POINTS; MODE;
D O I
10.1002/lpor.202401126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Topological phases of matter, with their quantized invariants, offer the potential for disorder-resistant transport via topological bound states. Contrary to the belief that dissipation disrupts Hermiticity and Zak phase quantization, theoretical and experimental evidence of their persistence in a non-Hermitian photonic waveguide array is presented. A three-layer Su-Schrieffer-Heeger (SSH) chain is demonstrated, which can be split into a Hermitian SSH subspace and a non-Hermitian ladder subspace through hidden symmetry. This division allows the SSH subspace to retain its topological properties, resulting in a quantized Zak phase and lossless topological bound states. Additionally, the non-Hermitian subspace supports coherent transport dynamics, with the phase and intensity of bound states fixed at two extreme SSH layers, confirming the presence of the Hermitian subspace. These findings enhance the understanding of the interplay between non-Hermiticity and topology and pave the way for coherent topological light transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Bound states of non-Hermitian quantum field theories
    Bender, CM
    Boettcher, S
    Jones, HF
    Meisinger, PN
    Simsek, M
    PHYSICS LETTERS A, 2001, 291 (4-5) : 197 - 202
  • [32] Bound states and photon emission in non-Hermitian nanophotonics
    Gong, Zongping
    Bello, Miguel
    Malz, Daniel
    Kunst, Flore K.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [33] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [34] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [35] Hermitian and non-hermitian higher-order topological states in mechanical metamaterials
    Tian, Yuping
    Tan, Zhuhua
    Zhang, Wei
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [36] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [37] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [38] Non-Hermitian Topological Photonics
    Zhen, Bo
    Zhou, Hengyun
    Peng, Chao
    Yoon, Yoseob
    Hsu, Chia Wei
    Nelson, Keith A.
    Shen, Huitao
    Fu, Liang
    Joannopoulos, John D.
    Soljacic, Marin
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [39] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [40] Topological states in a five-dimensional non-Hermitian system
    Zheng, Xingen
    Chen, Tian
    Zhang, Xiangdong
    PHYSICAL REVIEW B, 2024, 109 (08)