Observation of Lossless Topological Bound States from Non-Hermitian Subspaces

被引:0
|
作者
Li, Ze-Zheng [1 ,2 ]
Ke, Shao-Lin [2 ]
Yang, Ouyang [1 ]
Yu, Feng [1 ,4 ]
Jiang, Chuang [1 ,3 ]
Tian, Zhen-Nan [1 ]
Chen, Qi-Dai [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Wuhan Inst Technol, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instrum, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[4] BYD Automobile Ind Co Ltd, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
non-Hermitian photonics; topological bound states; topological subspaces; waveguide arrays; POINTS; MODE;
D O I
10.1002/lpor.202401126
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Topological phases of matter, with their quantized invariants, offer the potential for disorder-resistant transport via topological bound states. Contrary to the belief that dissipation disrupts Hermiticity and Zak phase quantization, theoretical and experimental evidence of their persistence in a non-Hermitian photonic waveguide array is presented. A three-layer Su-Schrieffer-Heeger (SSH) chain is demonstrated, which can be split into a Hermitian SSH subspace and a non-Hermitian ladder subspace through hidden symmetry. This division allows the SSH subspace to retain its topological properties, resulting in a quantized Zak phase and lossless topological bound states. Additionally, the non-Hermitian subspace supports coherent transport dynamics, with the phase and intensity of bound states fixed at two extreme SSH layers, confirming the presence of the Hermitian subspace. These findings enhance the understanding of the interplay between non-Hermiticity and topology and pave the way for coherent topological light transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Topological bound states in the continuum in a non-Hermitian photonic system
    Luo, Yihao
    Sun, Xiankai
    NANOPHOTONICS, 2025, 14 (01) : 43 - 50
  • [2] Observation of non-Hermitian topological synchronization
    Di, Fengxiao
    Zhang, Weixuan
    Zhang, Xiangdong
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [3] Non-Hermitian Control of Topological Scattering Singularities Emerging from Bound States in the Continuum
    Sakotic, Zarko
    Stankovic, Predrag
    Bengin, Vesna
    Krasnok, Alex
    Alu, Andrea
    Jankovic, Nikolina
    LASER & PHOTONICS REVIEWS, 2023, 17 (06)
  • [4] Topological states of non-Hermitian systems
    V. M. Martinez Alvarez
    J. E. Barrios Vargas
    M. Berdakin
    L. E. F. Foa Torres
    The European Physical Journal Special Topics, 2018, 227 : 1295 - 1308
  • [5] Topological states of non-Hermitian systems
    Martinez Alvarez, V. M.
    Barrios Vargas, J. E.
    Berdakin, M.
    Foa Torres, L. E. F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (12): : 1295 - 1308
  • [6] Observation of topological rainbow in non-Hermitian systems
    Lu, Cuicui
    Zhao, Wen
    Zhang, Sheng
    Zheng, Yanji
    Wang, Chenyang
    Li, Yaohua
    Liu, Yong-Chun
    Hu, Xiaoyong
    Hang, Zhi Hong
    CHINESE OPTICS LETTERS, 2023, 21 (12)
  • [7] Observation of topological rainbow in non-Hermitian systems
    路翠翠
    赵闻
    张胜
    郑焱基
    王晨阳
    李耀华
    刘永椿
    胡小永
    杭志宏
    Chinese Optics Letters, 2023, 21 (12) : 101 - 106
  • [8] Acoustic non-Hermitian higher-order topological bound states in the continuum
    Fan, Haiyan
    Gao, He
    Liu, Tuo
    An, Shuowei
    Zhu, Yifan
    Zhang, Hui
    Zhu, Jie
    Su, Zhongqing
    APPLIED PHYSICS LETTERS, 2025, 126 (07)
  • [9] Higher-order hybrid topological bound states in a non-Hermitian system
    Li, Xiaoxue
    Rui, Guanghao
    He, Jun
    Gu, Bing
    OPTICS LETTERS, 2023, 48 (13) : 3483 - 3486
  • [10] Hermitian chiral boundary states in non-Hermitian topological insulators
    Wang, C.
    Wang, X. R.
    PHYSICAL REVIEW B, 2022, 105 (12)