Explainable machine learning and multi-modal data for predicting readmission in patients with heart failure

被引:0
|
作者
Chae, R. [1 ]
Zhou, J. [2 ]
Car, J. [3 ]
Zhu, T. [4 ]
Lu, L. [4 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Hong Kong, Dept Family Med & Primary Care, Hong Kong, Peoples R China
[3] Kings Coll London, Sch Life Course & Populat Sci, London, England
[4] Univ Oxford, Dept Engn Sci, Oxford, England
关键词
D O I
10.1093/eurheartj/ehae666.931
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Multi-modal Knowledge-aware Reinforcement Learning Network for Explainable Recommendation
    Tao, Shaohua
    Qiu, Runhe
    Ping, Yuan
    Ma, Hui
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [32] Predicting 1 year readmission for heart failure: A comparative study of machine learning and the LACE index
    Song, Xuewu
    Tong, Yitong
    Xian, Feng
    Luo, Yi
    Tong, Rongsheng
    ESC HEART FAILURE, 2024, 11 (05): : 2481 - +
  • [33] Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
    Shin, Sheojung
    Austin, Peter C.
    Ross, Heather J.
    Abdel-Qadir, Husam
    Freitas, Cassandra
    Tomlinson, George
    Chicco, Davide
    Mahendiran, Meera
    Lawler, Patrick R.
    Billia, Filio
    Gramolini, Anthony
    Epelman, Slava
    Wang, Bo
    Lee, Douglas S.
    ESC HEART FAILURE, 2021, 8 (01): : 106 - 115
  • [34] Explainable Machine Learning to Predict Heart Failure Outcomes Using Exercise and Clinical Data
    Karanam, Varsha
    Magoon, Matthew
    Arunkumar, Neha
    Pattock, Andrew
    Dardas, Todd
    Boyle, Patrick
    Buber, Yonatan
    Leone, David
    CIRCULATION, 2024, 150
  • [35] Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
    Zhang, Jianhua
    Yin, Zhong
    Chen, Peng
    Nichele, Stefano
    INFORMATION FUSION, 2020, 59 : 103 - 126
  • [36] Multi-modal anchor adaptation learning for multi-modal summarization
    Chen, Zhongfeng
    Lu, Zhenyu
    Rong, Huan
    Zhao, Chuanjun
    Xu, Fan
    NEUROCOMPUTING, 2024, 570
  • [37] An explainable deep learning pipeline for multi-modal multi-organ medical image segmentation
    Mylona, E.
    Zaridis, D.
    Grigoriadis, G.
    Tachos, N.
    Fotiadis, D. I.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S275 - S276
  • [38] Learning Shared and Specific Factors for Multi-modal Data
    Yin, Qiyue
    Huang, Yan
    Wu, Shu
    Wang, Liang
    COMPUTER VISION, PT II, 2017, 772 : 89 - 98
  • [39] LEARNING UNIFIED SPARSE REPRESENTATIONS FOR MULTI-MODAL DATA
    Wang, Kaiye
    Wang, Wei
    Wang, Liang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3545 - 3549
  • [40] Multi-modal Contrastive Learning for Healthcare Data Analytics
    Li, Rui
    Gao, Jing
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 120 - 127