As the world's population continues to age, social patterns are changing, making aging a notable public health challenge. With aging as the major risk factor for cognitive decline, the global prevalence of dementia is projected to triple in the next 25 years. In light of the growing body of evidence of the involvement of microbiota in health and pathology, its role in age-related cognitive decline should be explored. Therefore, the aim of this narrative review is to thoroughly analyze the ways in which microbiota might affect the aging process and age-related cognitive decline. Overall, aging is a complex phenomenon manifested at systemic, cellular and molecular levels. According to recent studies, gut microbiota composition may influence age-related changes through the gut-brain axis. One mechanism involves dysbiosis-related chronic systemic inflammation, leading to the blood-brain barrier disruption and subsequent neuroinflammatory processes. In addition to inflammaging, gut microbiota may induce oxidative stress, which is another key factor in brain aging. Finally, not only gut microbiota, but also microbiota colonizing the oral cavity may be associated with age-related neurodegenerative diseases.