共 50 条
Rational design of MoS2/MoSe2 lateral heterostructure with optimal component ratio used for high-efficient photocatalytic overall water splitting
被引:1
|作者:
Zhao, Zecheng
[1
]
Yang, Chuanlu
[2
]
Cao, Zanxia
[1
]
Li, Bingwen
[1
]
Wei, Yunwei
[1
]
Liu, Guofeng
[1
]
Liu, Yuliang
[2
]
机构:
[1] Dezhou Univ, Inst Biophys, Shandong Key Lab Biophys, Dezhou 253023, Peoples R China
[2] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264025, Peoples R China
关键词:
MoS 2 /MoSe 2 lateral heterostructure;
Component ratio effects;
Overall water splitting;
Strain and PH effects;
Density function theory;
MONOLAYER MOS2;
SEPARATION;
GROWTH;
D O I:
10.1016/j.surfin.2024.105513
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The design of high-efficient photocatalysts is desirable for overall water splitting. In this work, the first-principles calculations are implemented to investigate the component ratio effects on the photocatalytic water splitting of MoS2/MoSe2 lateral heterostructure. MoS2/MoSe2 lateral heterostructure shows a decreased band-gap from 1.84 to 1.61 eV as component ratio n increases, and its band-edge alignments straddle the redox potential of H2O, only with the precondition of n < 0.5. According to the work function difference between the isolated monolayers, a significant charge separation appears across the stitching area, with the maximal charge transfer being 0.187 e/unit from MoSe2 to MoS2 side, and thereby induces a built-in electric field of 0.25 similar to 0.29 eV/unit, promoting the separation of HER and OER. MoS2/MoSe2 lateral heterostructure possesses considerable hole (electron) mobility of about 150 (50) cm(2)V(-1)s(-1), facilitating the charge-transfer and aggregation in the surface reactions. The absorption shows an obvious red-shift, sufficiently improving photon utilization. Additionally, MoS2/MoSe2 lateral heterostructure with n < 0.50 exhibits the reduced energy barriers in both the HER and OER. The strain and pH effects show that MoS2/MoSe2 lateral heterostructure with n < 0.5 behaves enhanced photocatalytic performance under tensile strain, and the heterostructure with n > 0.5 can also possesses suitable band-edge alignments by increasing pH value. These results provide theoretical support for developing efficient photocatalyst by adjusting component ratio in MoS2/MoSe2 lateral heterostructure.
引用
收藏
页数:12
相关论文