Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review

被引:2
|
作者
Yong, Ming [1 ,2 ,3 ]
Yang, Yang [4 ]
Sun, Liangliang [2 ,3 ]
Tang, Meng [2 ,3 ]
Wang, Zhuyuan [1 ]
Xing, Chao [1 ]
Hou, Jingwei [5 ]
Zheng, Min [6 ]
Chui, Ting Fong May [4 ]
Li, Zhikao [2 ,3 ]
Yang, Zhe [1 ]
机构
[1] Univ Queensland, Dow Ctr Sustainable Engn Innovat, Sch Chem Engn, Brisbane, Qld 4072, Australia
[2] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
[3] Monash Res Inst Sci & Technol, Suzhou Ind Pk, Suzhou 215000, Jiangsu, Peoples R China
[4] Univ Hong Kong, Dept Civil Engn, Pokfulam, Hong Kong 999077, Peoples R China
[5] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia
[6] Univ New South Wales, Water Res Ctr, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
来源
ACS ENVIRONMENTAL AU | 2024年 / 5卷 / 01期
基金
澳大利亚研究理事会;
关键词
nanofiltration; lithium extraction; membranemodification; process optimization; machine learning; system-scale analysis; lithium recovery; lithiumpurity; FILM NANOCOMPOSITE MEMBRANES; HOLLOW-FIBER MEMBRANES; POLYAMIDE THIN-FILMS; IONIC LIQUID; HIGH-FLUX; WATER; SEPARATION; RECOVERY; NF; MAGNESIUM;
D O I
10.1021/acsenvironau.4c00061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
引用
收藏
页码:12 / 34
页数:23
相关论文
共 50 条
  • [1] Nanofiltration membrane for enhancement in lithium recovery from salt-lake brine: A review
    Wen, Hui
    Liu, Zhiyu
    Xu, Jiajie
    Chen, J. Paul
    DESALINATION, 2024, 591
  • [2] A review of the nanofiltration membrane for magnesium and lithium separation from salt-lake brine
    Zhang, Lei
    Hu, Mengyang
    He, Benqiao
    Pei, Hongchang
    Li, Xianhui
    Matsuyama, Hideto
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [3] Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration
    Foo, Zi Hao
    Rehman, Danyal
    Bouma, Andrew T.
    Monsalvo, Sebastian
    Lienhard, John H.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (15) : 6320 - 6330
  • [4] Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice
    Xu, Shanshan
    Song, Jianfeng
    Bi, Qiuyan
    Chen, Qing
    Zhang, Wei-Ming
    Qian, Zexin
    Zhang, Lei
    Xu, Shiai
    Tang, Na
    He, Tao
    JOURNAL OF MEMBRANE SCIENCE, 2021, 635
  • [5] Novel approaches for lithium extraction from salt-lake brines: A review
    Liu, Gui
    Zhao, Zhongwei
    Ghahreman, Ahmad
    HYDROMETALLURGY, 2019, 187 : 81 - 100
  • [6] Selective lithium extraction from salt-lake brine using LATP-incorporated cellulose membranes in electrically driven systems
    Seo, Dongju
    Lee, Jiwoo
    Kong, Shik Rou
    Sim, Gyudae
    Park, Youngjune
    JOURNAL OF MEMBRANE SCIENCE, 2025, 718
  • [7] Extraction of Lithium from Salt Lake Brine
    Zhao, Xu
    Zhang, Qi
    Wu, Haihong
    Hao, Xiaocui
    Wang, Liang
    Huang, Xiping
    PROGRESS IN CHEMISTRY, 2017, 29 (07) : 796 - 808
  • [8] Nanofiltration as pretreatment for lithium recovery from salt lake brine
    Zhai, Juan
    Balogun, Adegbola
    Bhattacharjee, Shubhra
    Vogler, Ronald J.
    Khare, Rajesh
    Malmali, Mahdi
    Deonarine, Amrika
    Shen, Yue-xiao
    JOURNAL OF MEMBRANE SCIENCE, 2024, 710
  • [9] Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine
    Shenxiang Zhang
    Xian Wei
    Xue Cao
    Meiwen Peng
    Min Wang
    Lin Jiang
    Jian Jin
    Nature Communications, 15
  • [10] Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine
    Zhang, Shenxiang
    Wei, Xian
    Cao, Xue
    Peng, Meiwen
    Wang, Min
    Jiang, Lin
    Jin, Jian
    NATURE COMMUNICATIONS, 2024, 15 (01)