A review of the nanofiltration membrane for magnesium and lithium separation from salt-lake brine

被引:17
|
作者
Zhang, Lei [1 ]
Hu, Mengyang [2 ]
He, Benqiao [3 ]
Pei, Hongchang [1 ]
Li, Xianhui [4 ]
Matsuyama, Hideto [2 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo, Peoples R China
[2] Kobe Univ, Res Ctr Membrane & Film Technol, Kobe, Japan
[3] Tiangong Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[4] Guangdong Univ Technol, Sch Ecol Environm & Resources, Key Lab City Cluster Environm Safety & Green Dev, Minist Educ, Guangzhou, Peoples R China
关键词
Nanofiltration membrane; Size sieving; Donnan effect; Interfacial polymerization; Magnesium and lithium separation; HOLLOW-FIBER MEMBRANES; CROSS-LINKING; INTERFACIAL POLYMERIZATION; PHYSIOCHEMICAL PROPERTIES; NANOCOMPOSITE MEMBRANES; POLYAMIDE NANOFILMS; HIGH-FLUX; ION; NF; POLYETHYLENEIMINE;
D O I
10.1016/j.seppur.2024.129169
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofiltration (NF) membrane with small pore size and charged properties has attracted more attention recently in lithium extraction from salt-lake brine for addressing the escalating demand for lithium resources. Different kinds of NF membrane have been developed to accomplish the high efficiency Mg2+ and Li+ separation. To enhance comprehension of NF membranes in Mg2+ and Li+ separation, we propose a critical review focusing on the preparation method and Mg2+ and Li+ separation performance. According to the separation mechanism for Mg2+ and Li+, the NF membranes were defined as five types: (1) negatively charged NF membrane, (2) positively charged NF membrane, (3) mix-charged NF membrane, (4) size-sieving NF membrane and (5) bionic NF membrane. It is pointed out that the commercially available NF membrane with negatively charged property should be designed with narrow pore size distribution and the biggest pore size not more than the hydration diameter of Mg2+ to improve the Mg2+ and Li+ selectivity. Besides, the space distribution of charges in separation layer is also critical for Mg2+ and Li+ separation. This kind of NF membrane is still regarded as the mainstream membrane materials for Mg2+ and Li+ separation. Even though the positively charged NF membrane improves the rejection of Mg2+, it also increases the retention of Li+ at the same time, which leads to low Li+ permeability and further reduces the Mg2+ and Li+ separation efficiency. Besides, the positively charged NF membrane is easily polluted by nature organic matters with negatively charged property extensively existing in salt-lake brine. The hollow fiber NF membrane fabricated via layer-by-layer (LBL) assembly of polyelectrolytes should be further developed to achieve commercial application due to their high separation efficiency, high packing density, acid/ alkali/chlorine resistance, and good antifouling capacity. This review provides insight into the optimization and future development direction of the NF membrane design for Mg2+ and Li+ separation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nanofiltration membrane for enhancement in lithium recovery from salt-lake brine: A review
    Wen, Hui
    Liu, Zhiyu
    Xu, Jiajie
    Chen, J. Paul
    DESALINATION, 2024, 591
  • [2] Separation of magnesium from lithium in salt-lake brine through struvite precipitation
    Zhang, Ye
    Xu, Rui
    Wang, Li
    Sun, Wei
    MINERALS ENGINEERING, 2022, 180
  • [3] Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review
    Yong, Ming
    Yang, Yang
    Sun, Liangliang
    Tang, Meng
    Wang, Zhuyuan
    Xing, Chao
    Hou, Jingwei
    Zheng, Min
    Chui, Ting Fong May
    Li, Zhikao
    Yang, Zhe
    ACS ENVIRONMENTAL AU, 2024, 5 (01): : 12 - 34
  • [4] Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane
    Li Y.
    Wang M.
    Zhao Y.
    Wang H.
    Yang H.
    Zhu Z.
    Wang, Min (marliy001@163.com), 1600, Materials China (72): : 3130 - 3139
  • [5] Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration
    Foo, Zi Hao
    Rehman, Danyal
    Bouma, Andrew T.
    Monsalvo, Sebastian
    Lienhard, John H.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (15) : 6320 - 6330
  • [6] Nanofiltration Technology Used for Separation of Magnesium and Lithium from Salt Lake Brine:a Survey
    Xu P.
    Qian X.
    Guo C.
    Xu Z.
    Zhao L.
    Mai W.
    Li J.
    Tian X.
    Duo Y.
    Cailiao Daobao/Materials Review, 2019, 33 (02): : 410 - 417
  • [7] Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine
    Shenxiang Zhang
    Xian Wei
    Xue Cao
    Meiwen Peng
    Min Wang
    Lin Jiang
    Jian Jin
    Nature Communications, 15
  • [8] Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine
    Zhang, Shenxiang
    Wei, Xian
    Cao, Xue
    Peng, Meiwen
    Wang, Min
    Jiang, Lin
    Jin, Jian
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] Separation performance and fouling analyses of nanofiltration membrane for lithium extraction from salt lake brine
    Li, Y.
    Wang, M.
    Xiang, X.
    Zhao, Y. J.
    Peng, Z. J.
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [10] The application of nanofiltration membrane for recovering lithium from salt lake brine
    Li, Yan
    Zhao, YouJing
    Wang, Huaiyou
    Wang, Min
    DESALINATION, 2019, 468