Simulations of Common Unsupervised Domain Adaptation Algorithms for Image Classification

被引:0
|
作者
Chaddad, Ahmad [1 ,2 ]
Wu, Yihang [1 ]
Jiang, Yuchen [1 ]
Bouridane, Ahmed [3 ]
Desrosiers, Christian [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Lab Artificial Intelligence Personalised Med, Guilin 541004, Peoples R China
[2] Ecole Technol Super, Lab Imagery Vis & Artificial Intelligence, Montreal, PQ H3C 1K3, Canada
[3] Univ Sharjah, Ctr Data Analyt & Cybersecur CDAC, Sharjah, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Training; Deep learning; Data models; Internet; Feature extraction; Adaptation models; Transformers; Training data; Sun; Medical services; Domain adaptation (DA); image classification; machine learning; medical imaging;
D O I
10.1109/TIM.2025.3527531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional machine learning assumes that training and test sets are derived from the same distribution; however, this assumption does not always hold in practical applications. This distribution disparity can lead to severe performance drops when the trained model is used in new datasets. Domain adaptation (DA) is a machine learning technique that aims to address this problem by reducing the differences between domains. This article presents simulation-based algorithms of recent DA techniques, mainly related to unsupervised DA (UDA), where labels are available only in the source domain. Our study compares these techniques with public datasets and diverse characteristics, highlighting their respective strengths and drawbacks. For example, safe self-refinement for transformer-based DA (SSRT) achieved the highest accuracy (91.6%) in the office-31 dataset during our simulations, however, the accuracy dropped to 72.4% in the Office-Home dataset when using limited batch sizes. In addition to improving the reader's comprehension of recent techniques in DA, our study also highlights challenges and upcoming directions for research in this domain. The codes are available at https://github.com/AIPMLab/Domain_Adaptation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multilabel Aerial Image Classification With Unsupervised Domain Adaptation
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    Multimedia Tools and Applications, 2024, 83 (08) : 23311 - 23331
  • [3] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [4] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [5] A Biclassifier Network With Intermediate Domain for Unsupervised Domain Adaptation PolSAR Image Classification
    Wu, Zhenhua
    Zhu, Dayi
    Cao, Yice
    Zhang, Man
    Yang, Lixia
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [6] UNSUPERVISED DOMAIN ADAPTATION TECHNIQUES FOR CLASSIFICATION OF SATELLITE IMAGE TIME SERIES
    Lucas, Benjamin
    Pelletier, Charlotte
    Schmidt, Daniel
    Webb, Geoffrey, I
    Petitjean, Francois
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1074 - 1077
  • [7] Hyperspectral Image Classification Based on Unsupervised Heterogeneous Domain Adaptation CycleGan
    Wang, Xuesong
    Li, Yiran
    Cheng, Yuhu
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (04) : 608 - 614
  • [8] Histogram-Based Unsupervised Domain Adaptation for Medical Image Classification
    Diao, Pengfei
    Pai, Akshay
    Igel, Christian
    Krag, Christian Hedeager
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 755 - 764
  • [9] Hyperspectral Image Classification Based on Unsupervised Heterogeneous Domain Adaptation CycleGan
    WANG Xuesong
    LI Yiran
    CHENG Yuhu
    Chinese Journal of Electronics, 2020, 29 (04) : 608 - 614
  • [10] UNSUPERVISED DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION VIA CAUSAL INVARIANCE
    Wang, Biqi
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    Chanussot, Jocelyn
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1522 - 1525