Classification of homogeneous functors in manifold calculus

被引:0
|
作者
Tsopmene, Paul Arnaud Songhafouo [1 ]
Stanley, Donald [2 ]
机构
[1] Univ British Columbia Okanagan, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[2] Univ Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Calculus of functors; Manifold calculus; Homogeneous functors; Classifying space; POINT-OF-VIEW; EMBEDDINGS;
D O I
10.1007/s40062-025-00362-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any object A in a simplicial model category M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, we construct a topological space A<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{A}$$\end{document} which classifies homogeneous functors whose value on k open balls is equivalent to A. This extends a classification result of Weiss for homogeneous functors into topological spaces.
引用
收藏
页码:63 / 103
页数:41
相关论文
共 50 条