Classification of homogeneous functors in manifold calculus

被引:0
|
作者
Tsopmene, Paul Arnaud Songhafouo [1 ]
Stanley, Donald [2 ]
机构
[1] Univ British Columbia Okanagan, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[2] Univ Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Calculus of functors; Manifold calculus; Homogeneous functors; Classifying space; POINT-OF-VIEW; EMBEDDINGS;
D O I
10.1007/s40062-025-00362-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any object A in a simplicial model category M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, we construct a topological space A<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{A}$$\end{document} which classifies homogeneous functors whose value on k open balls is equivalent to A. This extends a classification result of Weiss for homogeneous functors into topological spaces.
引用
收藏
页码:63 / 103
页数:41
相关论文
共 50 条
  • [1] VERY GOOD HOMOGENEOUS FUNCTORS IN MANIFOLD CALCULUS
    Tsopmene, Paul Arnaud Songhafouo
    Stanley, Donald
    COLLOQUIUM MATHEMATICUM, 2019, 158 (02) : 265 - 297
  • [2] Polynomial functors in manifold calculus
    Tsopmene, Paul Arnaud Songhafouo
    Stanley, Donald
    TOPOLOGY AND ITS APPLICATIONS, 2018, 248 : 75 - 116
  • [3] Multivariable manifold calculus of functors
    Munson, Brian A.
    Volic, Ismar
    FORUM MATHEMATICUM, 2012, 24 (05) : 1023 - 1066
  • [4] Classification of homogeneous functors in manifold calculusClassification of homogeneous functors in manifold calculusP. A. S. Tsopméné, D. Stanley
    Paul Arnaud Songhafouo Tsopméné
    Donald Stanley
    Journal of Homotopy and Related Structures, 2025, 20 (1) : 63 - 103
  • [5] Calculus of functors and model categories
    Biedermann, Georg
    Chorny, Boris
    Roendigs, Oliver
    ADVANCES IN MATHEMATICS, 2007, 214 (01) : 92 - 115
  • [6] Calculus of functors and model categories, II
    Biedermann, Georg
    Roendigs, Oliver
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (05): : 2853 - 2913
  • [7] A chain rule in the calculus of homotopy functors
    Klein, John R.
    Rognes, John
    GEOMETRY & TOPOLOGY, 2002, 6 : 853 - 887
  • [8] OPERADS AND CHAIN RULES FOR THE CALCULUS OF FUNCTORS
    Arone, Greg
    Ching, Michael
    ASTERISQUE, 2011, (338) : 1 - +
  • [9] Unbased Calculus for Functors to Chain Complexes
    Basterra, Maria
    Bauer, Kristine
    Beaudry, Agnes
    Eldred, Rosona
    Johnson, Brenda
    Merling, Mona
    Yeakel, Sarah
    WOMEN IN TOPOLOGY: COLLABORATIONS IN HOMOTOPY THEORY, 2015, 641 : 29 - 48
  • [10] A REMARK ON PROPOSITIONAL CALCULUS WITH VARIABLE FUNCTORS
    ARAI, Y
    TANAKA, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (09): : 1056 - &