Compact spacelike submanifolds in non-negatively curved pseudo-Riemannian space forms

被引:0
|
作者
Aquib, Md [1 ]
Ciobanu, Alexandru [2 ]
Mihai, Adela [2 ,3 ]
Shabir, Furqan [4 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] Transilvania Univ Brasov, Interdisciplinary Doctoral Sch, Brasov, Romania
[3] Tech Univ Civil Engn Bucharest, Dept Math & Comp Sci, Bucharest, Romania
[4] Jamia Millia Islamia, Dept Math, New Delhi, India
关键词
Pseudo-Riemannian space form; Pseudo-Euclidean space; de Sitter space; Rigidity theorem; Totally umbilical submanifold; CONSTANT SCALAR CURVATURE; MEAN-CURVATURE; RIGIDITY THEOREMS; HYPERSURFACES;
D O I
10.1007/s10998-025-00633-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates compact spacelike submanifolds Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} immersed in a pseudo-Riemannian space form Npn+p(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{p}<^>{n+p}(c)$$\end{document}, in particular in the pseudo-Euclidean space Rpn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_{p}<^>{n+p}$$\end{document} and the de Sitter space Mpn+p(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p}<^>{n+p}(c)$$\end{document}, assuming the flatness of the normal bundle. Under some intrinsic conditions on Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document}, we give a classification in Npn+p(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{p}<^>{n+p}(c)$$\end{document}. We also present examples of submanifolds, sustaining the statements of the theorems.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Hypersurfaces Satisfying τ2(φ) = ητ(φ) in Pseudo-Riemannian Space Forms
    Du, Li
    Zhang, Juan
    Xie, Xun
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
  • [33] TOTALLY UMBILICAL PSEUDO-RIEMANNIAN SUBMANIFOLDS OF THE PARACOMPLEX PROJECTIVE-SPACE
    GADEA, PM
    AMILIBIA, AM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1994, 44 (04) : 741 - 756
  • [34] Pseudo-parallel Lorentzian Surfaces in Pseudo-Riemannian Space Forms
    Guillermo Lobos
    Mynor Melara
    Oscar Palmas
    Results in Mathematics, 2023, 78
  • [35] Inequalities for scalar curvature of pseudo-Riemannian submanifolds
    Tripathi, Mukut Mani
    Gulbahar, Mehmet
    Kilic, Erol
    Keles, Sadik
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 74 - 84
  • [36] Pseudo-parallel Lorentzian Surfaces in Pseudo-Riemannian Space Forms
    Lobos, Guillermo
    Melara, Mynor
    Palmas, Oscar
    RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [37] A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds
    Chen, Bang-Yen
    AXIOMS, 2019, 8 (04)
  • [38] NEW CHARACTERIZATIONS OF COMPLETE SPACELIKE SUBMANIFOLDS IN SEMI-RIEMANNIAN SPACE FORMS
    Camillo Camargo, Fernanda Ester
    Barreiro Chaves, Rosa Maria
    Machado de Sousa, Lutz Amancio, Jr.
    KODAI MATHEMATICAL JOURNAL, 2009, 32 (02) : 209 - 230
  • [39] Warped product hypersurfaces in pseudo-Riemannian real space forms
    Moruz, Marilena
    Vrancken, Luc
    GEOMETRY OF SUBMANIFOLDS, 2020, 756 : 173 - 186
  • [40] Classification of proper biharmonic hypersurfaces in pseudo-Riemannian space forms
    Liu, Jiancheng
    Du, Li
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 41 : 110 - 122