Design of Ranging Communication Coding and Noise Suppression Methods in Space Gravitational Wave Detection

被引:0
|
作者
Long, Hongyu [1 ]
Yu, Tao [1 ,2 ]
Xue, Ke [1 ]
Wang, Zhi [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Elect Informat Engn, Changchun 130022, Peoples R China
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
基金
国家重点研发计划;
关键词
space gravitational wave detection; ranging communication; bit-balanced code (BBC); phase noise; binary phase shift keying (BPSK);
D O I
10.3390/sym17010040
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A ranging communication system is a key technology for achieving precise ranging and scientific data exchange in space gravitational wave detection, with the aim of realizing the symmetry of interferometer arms. This system is integrated into the phase measurement payload, the 'phasemeter'. Achieving high-ranging accuracy and low-bit error rate communication while mitigating the impact of phase noise has become a focus of current research. This paper starts with the coding methods for ranging communication and analyzes phase modulation noise based on Binary Phase Shift Keying (BPSK). The study found that the main lobe phase noise caused by BPSK modulation is approximately 158 mu rad/Hz, which is two orders of magnitude higher than the phase-tracking criteria for gravitational wave detection. To address this, this paper proposes a Bit-Balanced Code (BBC) sequence design and optimization method aimed at eliminating main lobe noise. The experimental results show that the optimized BBC sequence improves the metrics of even autocorrelation, odd autocorrelation, maximum spectral amplitude, and even cross-correlation by 7.17, 2.83, 1.22, and 7.16, respectively, compared to the original sequence. Furthermore, experiments have demonstrated that the BBC sequence is insensitive to random data and can achieve dynamic bit balancing to eliminate the DC component. The proposed BBC sequence design method can serve as a reference for technologies related to space gravitational wave detection.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Space-Time Coding for MIMO Radar Detection and Ranging
    Jajamovich, Guido H.
    Lops, Marco
    Wang, Xiaodong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) : 6195 - 6206
  • [22] Gravitational Wave Detection by Interferometry (Ground and Space)
    Matthew Pitkin
    Stuart Reid
    Sheila Rowan
    Jim Hough
    Living Reviews in Relativity, 2011, 14
  • [23] Gravitational Wave Detection by Interferometry (Ground and Space)
    Pitkin, Matthew
    Reid, Stuart
    Rowan, Sheila
    Hough, Jim
    LIVING REVIEWS IN RELATIVITY, 2011, 14
  • [24] Space gravitational wave detection: Progress and outlook
    Ni, Wei-Tou
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (07)
  • [25] Gravitational wave detection by interferometry (ground and space)
    Rowan S.
    Hough J.
    Living Reviews in Relativity, 2000, 3 (1)
  • [26] Low-Noise Frequency Stabilized Laser for Space-Based Gravitational Wave Detection
    Li Ming
    Huang Yafeng
    Ye Meifeng
    Hu Di
    Fang Su
    Wang Yating
    Chen Yinnan
    Qu Yanan
    Yang Yuwei
    Feng Jijun
    Wang Lingke
    Liu Liang
    Li Tang
    ACTA OPTICA SINICA, 2023, 43 (19)
  • [27] Residual gas damping noise in constrained volume in space-borne gravitational wave detection
    Mao, Jiao-Jiao
    Tan, Yu-Jie
    Liu, Jian-Ping
    Yang, Shan-Qing
    Luo, Jie
    Shao, Cheng-Gang
    Zhou, Ze-Bing
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (07)
  • [28] Research on the tilt-to-length coupling noise suppression method inside the gravitational wave detection telescope
    Fan, Wen tong
    Song, Jie
    Hai, Hong wen
    Fang, Si jun
    Zhao, Kai
    Zhang, Rui
    Li, Bo hong
    Luo, Jian
    Sun, Qi cheng
    Fan, Lei
    Li, Zi zheng
    Yeh, Hsien-chi
    Yan, Yong
    OPTICS EXPRESS, 2024, 32 (07) : 12200 - 12212
  • [29] Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)
    Wang W.
    Li F.
    Li J.
    Ju M.
    Zheng L.
    Tian Y.
    Yin W.
    Tian L.
    Zheng Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (06):
  • [30] Methods of gravitational wave detection in the VIRGO Interferometer
    Acernese, F.
    Amico, P.
    Alshourbagy, M.
    Antonucci, F.
    Aoudia, S.
    Astone, P.
    Avino, S.
    Babusci, D.
    Ballardin, G.
    Barone, F.
    Barsotti, L.
    Barsuglia, M.
    Beauville, F.
    Bigotta, S.
    Birindelli, S.
    Bizouard, M. A.
    Boccara, C.
    Bondu, F.
    Bosi, L.
    Bradaschia, C.
    Braccini, S.
    Brillet, A.
    Brisson, V.
    Brocco, L.
    Buskulic, D.
    Calloni, E.
    Campagna, E.
    Carbognani, F.
    Cavalier, F.
    Cavalieri, R.
    Cella, G.
    Cesarini, E.
    Chassande-Mottin, E.
    Christensen, N.
    Corda, C.
    Corsi, A.
    Cottone, F.
    Clapson, A. C.
    Cleva, F.
    Coulon, J. P.
    Cuoco, E.
    Dari, A.
    Dattilo, V.
    Davier, M.
    del Prete, M.
    De Rosa, R.
    Di Fiore, L.
    Di Virgilio, A.
    Dujardin, B.
    Eleuteri, A.
    MULTICOLORED LANDSCAPE OF COMPACT OBJECTS AND THEIR EXPLOSIVE ORIGINS, 2007, 924 : 187 - 193