Superconductivity in Weyl semimetals with time reversal symmetry

被引:0
|
作者
Xuesong, Bai [1 ]
Liming, W. [1 ]
Zhou, Tao [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Sch Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2025年 / 27卷 / 01期
关键词
superconductivity; Weyl semimetal; time-reversal symmetry; surface state; FERMION SEMIMETAL; TRANSITION; ARCS;
D O I
10.1088/1367-2630/ada574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This theoretical study delves into the superconducting traits of Weyl semimetals that possess time reversal symmetry, utilizing the Bogoliubov-de Gennes equations. Our meticulous self-consistent calculations have unveiled a dual superconducting gap at the surface. We have also contrasted these findings with the superconducting characteristics of models that exhibit broken time-reversal symmetry. Our analysis indicates that Weyl semimetals with unimpaired time-reversal symmetry not only sustain a complete energy gap but also display modified Fermi arc surface states, which are notably distinct from those in models with compromised time-reversal symmetry. This work bridges the gap between theoretical expectations and experimental observations, advancing our understanding of the superconducting properties of Weyl semimetals.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Spectroscopic signatures of time-reversal symmetry breaking superconductivity
    Poniatowski, Nicholas R.
    Curtis, Jonathan B.
    Yacoby, Amir
    Narang, Prineha
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [32] Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points
    Jing-Min Hou
    Wei Chen
    Scientific Reports, 6
  • [33] Symmetry-enforced stability of interacting Weyl and Dirac semimetals
    Carlstrom, Johan
    Bergholtz, Emil J.
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [34] Spatial symmetry modulation of planar Hall effect in Weyl semimetals
    Wei, Yi-Wen
    Feng, Ji
    Weng, Hongming
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [35] Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry
    Gao, Zihao
    Hua, Meng
    Zhang, Haijun
    Zhang, Xiao
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [36] Spin-triplet superconductivity in Weyl nodal-line semimetals
    Tian Shang
    Sudeep K. Ghosh
    Michael Smidman
    Dariusz Jakub Gawryluk
    Christopher Baines
    An Wang
    Wu Xie
    Ye Chen
    Mukkattu O. Ajeesh
    Michael Nicklas
    Ekaterina Pomjakushina
    Marisa Medarde
    Ming Shi
    James F. Annett
    Huiqiu Yuan
    Jorge Quintanilla
    Toni Shiroka
    npj Quantum Materials, 7
  • [37] Spin-triplet superconductivity in Weyl nodal-line semimetals
    Shang, Tian
    Ghosh, Sudeep K.
    Smidman, Michael
    Gawryluk, Dariusz Jakub
    Baines, Christopher
    Wang, An
    Xie, Wu
    Chen, Ye
    Ajeesh, Mukkattu O.
    Nicklas, Michael
    Pomjakushina, Ekaterina
    Medarde, Marisa
    Shi, Ming
    Annett, James F.
    Yuan, Huiqiu
    Quintanilla, Jorge
    Shiroka, Toni
    NPJ QUANTUM MATERIALS, 2022, 7 (01)
  • [38] Time-reversal symmetry breaking superconductivity in CaSb2
    Oudah, M.
    Cai, Y.
    Sanchez, M. V. De Toro
    Bannies, J.
    Aronson, M. C.
    Kojima, K. M.
    Bonn, D. A.
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [39] Time-reversal symmetry-breaking nematic superconductivity in FeSe
    Kang, Jian
    Chubukov, Andrey, V
    Fernandes, Rafael M.
    PHYSICAL REVIEW B, 2018, 98 (06)
  • [40] Reply to "Comment on 'Time-reversal symmetry-breaking superconductivity' "
    Ghosh, H
    PHYSICAL REVIEW B, 2001, 63 (22):