Equality tests of covariance matrices under a low-dimensional factor structure

被引:0
|
作者
Hyodo, Masashi [1 ]
Nishiyama, Takahiro [2 ]
Watanabe, Hiroki [3 ]
Nakagawa, Tomoyuki [4 ]
Tahata, Kouji [5 ]
机构
[1] Kanagawa Univ, Fac Econ, 3-27-1 Rokkakubashi,Kanagawa Ku, Yokohama, Kanagawa, Japan
[2] Senshu Univ, Dept Business Adm, 2-1-1 Higashimita,Tama Ku, Kawasaki, Kanagawa 2148580, Japan
[3] Ferris Univ, Fac Global & Intercultural Studies, 4-5-3 Ryokuen,Izumi Ku, Yokohama, Kanagawa, Japan
[4] Meisei Univ, Sch Data Sci, 2-1-1 Hodokubo, Hino, Tokyo, Japan
[5] Tokyo Univ Sci, Dept Informat Sci, 2641 Yamazaki, Noda Shi, Chiba 2788510, Japan
关键词
High-dimensional testing problem; Loading factor dimensions; SAMPLE-SIZE DATA;
D O I
10.1016/j.jmva.2024.105397
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an equality test to compare two covariance matrices in a high-dimensional framework while accommodating a low-dimensional latent factor model. We show that null limiting distributions of the test statistics follow a weighted mixture of chi-square distributions under a high-dimensional asymptotic regime combined with weak technical conditions. This distribution depends on the noise covariance matrix and the number of latent factors. Because latent factors are often unknown, we employ an estimation that builds on recent advances in random matrix theory. A numerical study demonstrates the asymptotic power of the proposed test and confirms its favorable analytical properties compared to existing procedures.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] ON THE TIKU-BALAKRISHNAN TESTS FOR EQUALITY OF COVARIANCE MATRICES
    OBRIEN, RG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (02) : 423 - 428
  • [12] Low-dimensional representation of error covariance
    Tippett, MK
    Cohn, SE
    Todling, R
    Marchesin, D
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2000, 52 (05) : 533 - 553
  • [13] Two step-down tests for equality of covariance matrices
    Chaudhuri, Sanjay
    Perlman, Michael D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 417 (01) : 42 - 63
  • [14] Asymptotic distributions for likelihood ratio tests for the equality of covariance matrices
    Guo, Wenchuan
    Qi, Yongcheng
    METRIKA, 2024, 87 (03) : 247 - 279
  • [15] FORTRAN PROGRAM FOR PERFORMING TESTS FOR EQUALITY OF COVARIANCE OR CORRELATION MATRICES
    RAWLINGS, RR
    PAUTLER, CP
    BEHAVIORAL SCIENCE, 1972, 17 (06): : 570 - &
  • [16] MONTE-CARLO COMPARISON OF TESTS FOR EQUALITY OF COVARIANCE MATRICES
    LAYARD, MWJ
    BIOMETRIKA, 1974, 61 (03) : 461 - 465
  • [17] SIMULTANEOUS TESTS FOR EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTERNATIVES
    KRISHNAIAH, PR
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04): : 1303 - +
  • [18] Asymptotic distributions for likelihood ratio tests for the equality of covariance matrices
    Wenchuan Guo
    Yongcheng Qi
    Metrika, 2024, 87 : 247 - 279
  • [19] Tests for High-Dimensional Covariance Matrices
    Chen, Song Xi
    Zhang, Li-Xin
    Zhong, Ping-Shou
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 810 - 819
  • [20] Tests for high-dimensional covariance matrices
    Chen, Jing
    Wang, Xiaoyi
    Zheng, Shurong
    Liu, Baisen
    Shi, Ning-Zhong
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (03)