Hybrid Quality-Based Recommender Systems: A Systematic Literature Review

被引:0
|
作者
Sabiri, Bihi [1 ]
Khtira, Amal [2 ]
El Asri, Bouchra [1 ]
Rhanoui, Maryem [3 ,4 ]
机构
[1] Mohammed V Univ Rabat, Rabat IT Ctr, IMS Team, ADMIR Lab,ENSIAS, Rabat 10130, Morocco
[2] Mohammed V Univ Rabat, LASTIMI Lab, EST Sale, Sale 11060, Morocco
[3] Univ Lyon, Univ Claude Bernard Lyon 1, Lab Hlth Syst Proc P2S, UR4129, F-69008 Lyon, France
[4] Sch Informat Sci, LYRICA Lab, Meridian Team, Rabat 10100, Morocco
关键词
hybrid quality-based recommendations; strategy recommender systems; systematic review; big data;
D O I
10.3390/jimaging11010012
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
As technology develops, consumer behavior and how people search for what they want are constantly evolving. Online shopping has fundamentally changed the e-commerce industry. Although there are more products available than ever before, only a small portion of them are noticed; as a result, a few items gain disproportionate attention. Recommender systems can help to increase the visibility of lesser-known products. Major technology businesses have adopted these technologies as essential offerings, resulting in better user experiences and more sales. As a result, recommender systems have achieved considerable economic, social, and global advancements. Companies are improving their algorithms with hybrid techniques that combine more recommendation methodologies as these systems are a major research focus. This review provides a thorough examination of several hybrid models by combining ideas from the current research and emphasizing their practical uses, strengths, and limits. The review identifies special problems and opportunities for designing and implementing hybrid recommender systems by focusing on the unique aspects of big data, notably volume, velocity, and variety. Adhering to the Cochrane Handbook and the principles developed by Kitchenham and Charters guarantees that the assessment process is transparent and high in quality. The current aim is to conduct a systematic review of several recent developments in the area of hybrid recommender systems. The study covers the state of the art of the relevant research over the last four years regarding four knowledge bases (ACM, Google Scholar, Scopus, and Springer), as well as all Web of Science articles regardless of their date of publication. This study employs ASReview, an open-source application that uses active learning to help academics filter literature efficiently. This study aims to assess the progress achieved in the field of hybrid recommender systems to identify frequently used recommender approaches, explore the technical context, highlight gaps in the existing research, and position our future research in relation to the current studies.
引用
收藏
页数:66
相关论文
共 50 条
  • [21] Affective recommender systems in the educational field. A systematic literature review
    Salazar, Camilo
    Aguilar, Jose
    Monsalve-Pulido, Julian
    Montoya, Edwin
    COMPUTER SCIENCE REVIEW, 2021, 40
  • [22] Characterizing context-aware recommender systems: A systematic literature review
    Villegas, Norha M.
    Sanchez, Cristian
    Diaz-Cely, Javier
    Tamura, Gabriel
    KNOWLEDGE-BASED SYSTEMS, 2018, 140 : 173 - 200
  • [23] A Literature Review on Medicine Recommender Systems
    Stark, Benjamin
    Knahl, Constanze
    Aydin, Mert
    Elish, Karim
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 6 - 13
  • [24] Package recommender systems: A systematic review
    van Schaik, S. N.
    Masthoff, J.
    Wibowo, A. T.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (04): : 435 - 452
  • [25] Economic recommender systems - a systematic review
    De Biasio, Alvise
    Navarin, Nicolo
    Jannach, Dietmar
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2024, 63
  • [26] A systematic literature review of recent advances on context-aware recommender systems
    Mateos, Pablo
    Bellogin, Alejandro
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [27] Health Recommender Systems: Systematic Review
    De Croon, Robin
    Van Houdt, Leen
    Htun, Nyi Nyi
    Stiglic, Gregor
    Vanden Abeele, Vero
    Verbert, Katrien
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (06)
  • [28] Context-Aware Recommender Systems in the Music Domain: A Systematic Literature Review
    Lozano Murciego, Alvaro
    Jimenez-Bravo, Diego M.
    Valera Roman, Adrian
    De Paz Santana, Juan F.
    Moreno-Garcia, Maria N.
    ELECTRONICS, 2021, 10 (13)
  • [29] Recommender systems: A systematic review of the state of the art literature and suggestions for future research
    Alyari, Fatemeh
    Navimipour, Nima Jafari
    KYBERNETES, 2018, 47 (05) : 985 - 1017
  • [30] Understanding user intent modeling for conversational recommender systems: a systematic literature review
    Farshidi, Siamak
    Rezaee, Kiyan
    Mazaheri, Sara
    Rahimi, Amir Hossein
    Dadashzadeh, Ali
    Ziabakhsh, Morteza
    Eskandari, Sadegh
    Jansen, Slinger
    USER MODELING AND USER-ADAPTED INTERACTION, 2024, 34 (05) : 1643 - 1706