Retrospective Data-Driven Motion Correction of 18F-FDG Brain PET

被引:0
|
作者
Maurer, Alexander [1 ]
Spangler-Bickell, Matthew G. [2 ]
Mader, Cacilia E. [1 ]
Kotasidis, Fotis [2 ]
Huellner, Martin W. [1 ]
机构
[1] Univ Zurich, Univ Hosp Zurich, Dept Nucl Med, Ramistr 100, CH-8091 Zurich, Switzerland
[2] GE Healthcare, Waukesha, WI USA
关键词
FDG brain PET; motion correction; neurodegeneration; dementia; hypometabolism; LEWY BODIES; FDG PET; DEMENTIA; SIGN; MRI;
D O I
10.1097/RLU.0000000000005443
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A 51-year-old man with severe multifactorial neurocognitive disorders subsequent to delirium, benzodiazepine withdrawal, and preexisting psychiatric illness was referred for F-18-FDG PET/CT brain imaging in order to rule out an underlying neurodegenerative cause of the symptoms, particularly frontotemporal lobar degeneration. Imaging was impaired by severe motion artifacts, leading to a false-positive result. However, utilizing retrospective data-driven motion correction facilitated a change in diagnosis, ruling out the presence of neurodegenerative disease. The implementation of motion correction of the F-18-FDG PET dataset proved crucial for the patient, as the exclusion of frontotemporal lobar degeneration formed the basis for continuing psychiatric and psychotherapeutic treatment.
引用
收藏
页码:1103 / 1104
页数:2
相关论文
共 50 条
  • [31] Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain
    Zhang, Huiwei
    Wu, Ping
    Ziegler, Sibylle I.
    Guan, Yihui
    Wang, Yuetao
    Ge, Jingjie
    Schwaiger, Markus
    Huang, Sung-Cheng
    Zuo, Chuantao
    Foerster, Stefan
    Shi, Kuangyu
    NEUROIMAGE, 2017, 146 : 589 - 599
  • [32] A deep learning approach for 18F-FDG PET attenuation correction
    Fang Liu
    Hyungseok Jang
    Richard Kijowski
    Gengyan Zhao
    Tyler Bradshaw
    Alan B. McMillan
    EJNMMI Physics, 5
  • [33] Performance of 18F-FDG PET/MR on TNM staging of pancreatic cancer compared with 18F-FDG PET/CT: A retrospective cohort study
    Zhang, H.
    Liu, S.
    Li, B.
    Hao, J.
    Zhang, Z.
    Shi, H.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2024, 48 (01): : 8 - 15
  • [34] A deep learning approach for 18F-FDG PET attenuation correction
    Liu, Fang
    Jang, Hyungseok
    Kijowski, Richard
    Zhao, Gengyan
    Bradshaw, Tyler
    McMillan, Alan B.
    EJNMMI PHYSICS, 2018, 5 : 1 - 15
  • [35] Comparison of data-driven gating and external hardware-gating for 18F-FDG PET/MRI in patients with esophageal tumors
    Kvernby, S.
    Hult, N. Korsavidou
    Sigfridsson, J.
    Ahlstrom, H.
    Bjerner, T.
    Lubberink, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S415 - S415
  • [36] 18F-FDG PET and 18F-FDG PET/CT for Assessing Response to Therapy in Esophageal Cancer
    Krause, Bernd J.
    Herrmann, Ken
    Wieder, Hinrich
    zum Bueschenfelde, Christian Meyer
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50 : 89S - 96S
  • [37] The Performance of 18F-FDG PET and 18F-FDG PET/CT in Detection of Carcinoma of Unknown Primary
    Dong, M.
    Zhao, K.
    Zhao, J.
    Guan, Y.
    Liu, Z.
    Ruan, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 : S275 - S275
  • [38] 18F-FDG PET/MRI versus 18F-FDG PET/CT for the diagnosis of pituitary adenoma
    Wang, Hao
    Zhao, Xiaobin
    Zang, Jie
    Zhu, Zhaohui
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [39] Voxel-Based Analysis of [18F]-FDG Brain PET in Rats Using Data-Driven Normalization
    Proesmans, Silke
    Raedt, Robrecht
    Germonpre, Charlotte
    Christiaen, Emma
    Descamps, Benedicte
    Boon, Paul
    De Herdt, Veerle
    Vanhove, Christian
    FRONTIERS IN MEDICINE, 2021, 8
  • [40] Data-driven motion compensation using cGAN for total-body [18F]FDG-PET imaging
    Sundar, Lalith Shiyam
    Iommi, David
    Spencer, Benjamin
    Wang, Qian
    Cherry, Simon
    Beyer, Thomas
    Badawi, Ramsey
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62