Engineering The Neck Hinge Reshapes The Processive Movement of Kinesin-3

被引:0
|
作者
Li, Dong [1 ,3 ]
Ren, Jin-Qi [1 ]
Song, Yin-Long [2 ]
Liang, Xin [2 ]
Feng, Wei [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromolecules, Key Lab Biomacromolecules CAS,Natl Lab Biomacromol, Beijing 100101, Peoples R China
[2] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[3] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
intracellular transport; molecular motor; kinesin-3; neck hinge; processive movement; MOTOR; DOMAIN; DETERMINANTS; PURIFICATION; DIMERIZATION; TUBULIN; WALKING; REVEAL; TANDEM;
D O I
10.16476/j.pibb.2024.0269
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objective In kinesin-3, the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A. The function of this neck hinge for controlling processive movement, however, remains unclear. Methods We made a series of modifications to the neck hinges of KIF13B and KIF1A and tested their movement using a single-molecule motility assay. Results In KIF13B, the insertion of flexible residues before or after the proline differentially impacts the processivity or velocity, while the removal of this proline increases the both. In KIF1A, the deletion of entire flexible neck hinge merely enhances the processivity. The engineering of these hinge-truncated necks of kinesin-3 into kinesin-1 similarly boosts the processive movement of kinesin-1. Conclusion The neck hinge in kinesin-3 controls its processive movement and proper modifications tune the motor motility, which provides a novel strategy to reshape the processive movement of kinesin motors.
引用
收藏
页码:2730 / 2740
页数:11
相关论文
共 50 条
  • [31] Novel Kinesin-3 Motor Behavior is Regulated by Tau
    Lessard, Dominique V.
    Berger, Christopher L.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 511A - 511A
  • [32] Processive Motility of Heterodimeric Kinesin That Has Defect in the Neck Linker Docking
    Mori, Teppei
    Nakajima, Michiko
    Tomishige, Michio
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 134A - 134A
  • [33] Role of the kinesin neck region in processive microtubule-based motility
    Romberg, L
    Pierce, DW
    Vale, RD
    JOURNAL OF CELL BIOLOGY, 1998, 140 (06): : 1407 - 1416
  • [34] Kinesin-3 is an Organelle Motor in the Squid Giant Axon
    DeGiorgis, Joseph A.
    Petukhova, Tatyana A.
    Evans, Teresa A.
    Reese, Thomas S.
    TRAFFIC, 2008, 9 (11) : 1867 - 1877
  • [35] Impact of the K-loop on kinesin-3 motility
    Samwer, M.
    Adio, S.
    Woehlke, G.
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2007, 86 : 9 - 9
  • [36] Mapping the Processivity Determinants of the Kinesin-3 Motor Domain
    Scarabelli, Guido
    Soppina, Virupakshi
    Yao, Xin-Qiu
    Atherton, Joseph
    Moores, Carolyn A.
    Verhey, Kristen J.
    Grant, Barry J.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 459A - 459A
  • [37] Properties of a novel kinesin-3 from Neurospora crassa
    Woehlke, G
    Adio, S
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 650A - 650A
  • [38] Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model
    Kita, Tomoki
    Sasaki, Kazuo
    Niwa, Shinsuke
    BIOPHYSICAL JOURNAL, 2025, 124 (01) : 205 - 214
  • [39] Kinesin proceeds through a captive head state during processive movement
    Hanes, JW
    Lillemoen, J
    Simpson, ZB
    Johnson, KA
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 371A - 371A
  • [40] An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules
    Woll, Kellie A.
    Guzik-Lendrum, Stephanie
    Bensel, Brandon M.
    Bhanu, Natarajan V.
    Dailey, William P.
    Garcia, Benjamin A.
    Gilbert, Susan P.
    Eckenhoff, Roderic G.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (29) : 11283 - 11295