Machine Learning-Driven Maintenance Order Generation in Assembly Lines

被引:0
|
作者
Princz, Gabor [1 ]
Shaloo, Masoud [1 ]
Reisacher, Fabian [1 ]
Erol, Selim [1 ]
机构
[1] Univ Appl Sci Wiener Neustadt, Johannes Gutenberg Str 3, A-2700 Wiener Neustadt, Austria
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 19期
关键词
Condition-Based Maintenance; Predictive Maintenance; Engineering Applications of Artificial Intelligence; TIME-SERIES;
D O I
10.1016/j.ifacol.2024.09.119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The automatic generation of maintenance orders facilitates the prompt detection and root cause analysis of deviations or failures in the assembly process. The aim of this project is to use supervised learning models to recognise deviations in the throughput times of a fully automated assembly process carried out by robots. The model identifies errors, categorises their causes and transmits the information back to the Enterprise Resource Planning (ERP) system. The data collected comes from a development and test assembly station with an industrial robot. The data set from the assembly station was expanded using agent-based simulation in order to train the four models Support Vector Machine, K-Neares Neighbour, Naive Bayes and Decision Tree. The SVM model proved to be the most suitable model for automatic fault detection with an accuracy of 99.51 %. The model was integrated into the assembly station and an algorithm was developed to automatically generate maintenance messages to transmit the failure code to the ERP system.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Learning-driven goal generation
    Pozanco, A.
    Fernandez, S.
    Borrajo, D.
    AI COMMUNICATIONS, 2018, 31 (02) : 137 - 150
  • [2] Machine Learning-driven Immersive Scenarios Classification and Generation for Virtual Reality
    Leiva, Mario A.
    Cravero, Fiorella
    Selzer, Matias N.
    2024 L LATIN AMERICAN COMPUTER CONFERENCE, CLEI 2024, 2024,
  • [3] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [4] Machine Learning-Driven Language Assessment
    Settles, Burr
    LaFlair, Geoffrey T.
    Hagiwara, Masato
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2020, 8 : 247 - 263
  • [5] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [6] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [7] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [8] A survey of deep learning-driven architecture for predictive maintenance
    Li, Zhe
    He, Qian
    Li, Jingyue
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [9] Machine Learning-Driven Predictive Maintenance Framework for Anomaly Detection and Prognostics in Wind Farm Operations
    Nuvvula, Ramakrishna S. S.
    Kumar, Polamarasetty P.
    Theetchenya, S.
    Ahammed, Syed Riyaz
    Hushein, R.
    Babu, J. M.
    Ali, Ahmed
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 284 - 289
  • [10] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7