Clonal phylogenies inferred from bulk, single cell, and spatial transcriptomic analysis of epithelial cancers

被引:0
|
作者
Erickson, Andrew [1 ,2 ]
Figiel, Sandy [1 ]
Rajakumar, Timothy [1 ]
Rao, Srinivasa [1 ]
Yin, Wencheng [1 ]
Doultsinos, Dimitrios [1 ]
Magnussen, Anette [1 ]
Singh, Reema [1 ]
Poulose, Ninu [1 ]
Bryant, Richard J. [1 ,3 ]
Cussenot, Olivier [1 ]
Hamdy, Freddie C. [1 ,3 ]
Woodcock, Dan [1 ]
Mills, Ian G. [1 ]
Lamb, Alastair D. [1 ,3 ]
机构
[1] Univ Oxford, Nuffield Dept Surg Sci, Oxford, England
[2] Univ Helsinki, Res Program Syst Oncol, Helsinki, Finland
[3] Oxford Univ Hosp NHS Fdn Trust, Dept Urol, Oxford, England
来源
PLOS ONE | 2025年 / 20卷 / 01期
基金
芬兰科学院;
关键词
EVOLUTION; HETEROGENEITY;
D O I
10.1371/journal.pone.0316475
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data. While these inferred SNV and CNV states can be used to resolve clonal phylogenies, however, it is still unknown how faithfully transcript-based tumour phylogenies reconstruct ground truth DNA-based tumour phylogenies. We sought to study the accuracy of inferred-transcript to recapitulate DNA-based tumour phylogenies. We first performed in-silico comparisons of inferred and directly resolved SNV and CNV status, from single cancer cells, from three different cell lines. We found that inferred SNV phylogenies accurately recapitulate DNA phylogenies (entanglement = 0.097). We observed similar results in iCNV and CNV based phylogenies (entanglement = 0.11). Analysis of published prostate cancer DNA phylogenies and inferred CNV, SNV and transcript based phylogenies demonstrated phylogenetic concordance. Finally, a comparison of pseudo-bulked spatial transcriptomic data to adjacent sections with WGS data also demonstrated recapitulation of ground truth (entanglement = 0.35). These results suggest that transcript-based inferred phylogenies recapitulate conventional genomic phylogenies. Further work will need to be done to increase accuracy, genomic, and spatial resolution.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SINGLE CELL TRANSCRIPTOMIC ANALYSIS REVEALS EXPANSION OF UNIQUE EPITHELIAL CELL POPULATIONS DURING ESOPHAGEAL CARCINOGENESIS
    Karami, Adam
    Kabir, Mohammad Faujul
    Klochkova, Alena
    Mu, Anbin
    Yancey, Brittany
    Whelan, Kelly A.
    GASTROENTEROLOGY, 2021, 160 (06) : S660 - S661
  • [22] Single-cell transcriptomic analysis identifies divergent tumor epithelial cell states in colorectal metastasis
    Mirza, Muhammad B.
    Cottam, Matthew A.
    Idrees, Kamran
    ANNALS OF SURGICAL ONCOLOGY, 2024, 31 (01) : S12 - S13
  • [23] Clonal fitness inferred from time-series modelling of single-cell cancer genomes
    Sohrab Salehi
    Farhia Kabeer
    Nicholas Ceglia
    Mirela Andronescu
    Marc J. Williams
    Kieran R. Campbell
    Tehmina Masud
    Beixi Wang
    Justina Biele
    Jazmine Brimhall
    David Gee
    Hakwoo Lee
    Jerome Ting
    Allen W. Zhang
    Hoa Tran
    Ciara O’Flanagan
    Fatemeh Dorri
    Nicole Rusk
    Teresa Ruiz de Algara
    So Ra Lee
    Brian Yu Chieh Cheng
    Peter Eirew
    Takako Kono
    Jenifer Pham
    Diljot Grewal
    Daniel Lai
    Richard Moore
    Andrew J. Mungall
    Marco A. Marra
    Andrew McPherson
    Alexandre Bouchard-Côté
    Samuel Aparicio
    Sohrab P. Shah
    Nature, 2021, 595 : 585 - 590
  • [24] Single-cell Transcriptomic Analysis
    Zheng, Zhihong
    Chen, Enguo
    Lu, Weiguo
    Mouradian, Gary
    Hodges, Matthew
    Liang, Mingyu
    Liu, Pengyuan
    Lu, Yan
    COMPREHENSIVE PHYSIOLOGY, 2020, 10 (02) : 767 - 783
  • [25] Clonal fitness inferred from time-series modelling of single-cell cancer genomes
    Salehi, Sohrab
    Kabeer, Farhia
    Ceglia, Nicholas
    Andronescu, Mirela
    Williams, Marc J.
    Campbell, Kieran R.
    Masud, Tehmina
    Wang, Beixi
    Biele, Justina
    Brimhall, Jazmine
    Gee, David
    Lee, Hakwoo
    Ting, Jerome
    Zhang, Allen W.
    Hoa Tran
    O'Flanagan, Ciara
    Dorri, Fatemeh
    Rusk, Nicole
    de Algara, Teresa Ruiz
    Lee, So Ra
    Cheng, Brian Yu Chieh
    Eirew, Peter
    Kono, Takako
    Pham, Jenifer
    Grewal, Diljot
    Lai, Daniel
    Moore, Richard
    Mungall, Andrew J.
    Marra, Marco A.
    McPherson, Andrew
    Bouchard-Cote, Alexandre
    Aparicio, Samuel
    Shah, Sohrab P.
    NATURE, 2021, 595 (7868) : 585 - +
  • [26] tauFisher predicts circadian time from a single sample of bulk and single-cell pseudobulk transcriptomic data
    Duan, Junyan
    Ngo, Michelle N.
    Karri, Satya Swaroop
    Tsoi, Lam C.
    Gudjonsson, Johann E.
    Shahbaba, Babak
    Lowengrub, John
    Andersen, Bogi
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] COMPREHENSIVE SINGLE CELL TRANSCRIPTOMIC PROFILING OF UNTREATED RESECTABLE LUNG CANCERS
    Connor, Sydney
    Zhang, Jiajia
    Caushi, Justina
    Zhang, Boyang
    Zeng, Zhen
    Sanber, Khaled
    Pereira, Gavin
    Anagnostou, Valsamo
    Tam, Ada
    Ionta, Nicholas
    Housseau, Franck
    Forde, Patrick
    Ji, Hongkai
    Pardoll, Andrew
    Smith, Kellie
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 : A564 - A564
  • [29] Inferring spatial and signaling relationships between cells from single cell transcriptomic data
    Cang, Zixuan
    Nie, Qing
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Inferring spatial and signaling relationships between cells from single cell transcriptomic data
    Zixuan Cang
    Qing Nie
    Nature Communications, 11