Realization of one-dimensional anyons with arbitrary statistical phase

被引:4
|
作者
Kwan, Joyce [1 ]
Segura, Perrin [1 ]
Li, Yanfei [1 ]
Kim, Sooshin [1 ,5 ]
Gorshkov, Alexey V. [2 ,3 ]
Eckardt, Andre [4 ]
Bakkali-Hassani, Brice [1 ,6 ]
Greiner, Markus [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD USA
[4] Tech Univ Berlin, Inst Theoret Phys, Berlin, Germany
[5] Pohang Univ Sci & Technol, Basic Sci Res Inst, , Gyeongbuk, Pohang, South Korea
[6] Sorbonne Univ, ENS Univ PSL, Coll France, Lab Kastler Brossel,CNRS, Paris, France
关键词
FRACTIONAL STATISTICS; QUANTUM WALKS; HANBURY BROWN; MODEL; GAS;
D O I
10.1126/science.adi3252
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-dimensional quantum systems can host anyons, particles with exchange statistics that are neither bosonic nor fermionic. However, the physics of anyons in one dimension remains largely unexplored. In this work, we realize Abelian anyons in one dimension with arbitrary exchange statistics using ultracold atoms in an optical lattice, where we engineer the statistical phase through a density-dependent Peierls phase. We explore the dynamical behavior of two anyons undergoing quantum walks and observe the anyonic Hanbury Brown-Twiss effect as well as the formation of bound states without on-site interactions. Once interactions are introduced, we observe spatially asymmetric transport in contrast to the symmetric dynamics of bosons and fermions. Our work forms the foundation for exploring the many-body behavior of one-dimensional anyons.
引用
收藏
页码:1055 / 1060
页数:6
相关论文
共 50 条
  • [41] Implementing Arbitrary Phase Gates with Ising Anyons
    Bonderson, Parsa
    Clarke, David J.
    Nayak, Chetan
    Shtengel, Kirill
    PHYSICAL REVIEW LETTERS, 2010, 104 (18)
  • [42] PEIERLS INSTABILITY IN ONE-DIMENSIONAL CONDUCTORS WITH ARBITRARY BANDFILLING
    NIELSEN, JB
    CARNEIRO, K
    SOLID STATE COMMUNICATIONS, 1980, 33 (11) : 1097 - 1099
  • [43] Polarons and bipolarons in one-dimensional systems (arbitrary coupling)
    Kashirina, N. I.
    Kashyrina, Y. O.
    Korol, O. A.
    Roik, O. S.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 766 (01) : 111 - 120
  • [44] Designing arbitrary one-dimensional potentials on an atom chip
    Tajik, Mohammadamin
    Rauer, Bernhard
    Schweigler, Thomas
    Cataldini, Federica
    Sabino, Joao
    Moller, Frederik S.
    Ji, Si-Cong
    Mazets, Igor E.
    Schmiedmayer, Joerg
    OPTICS EXPRESS, 2019, 27 (23) : 33474 - 33487
  • [46] Quantization scheme for arbitrary one-dimensional potential wells
    Cao, ZQ
    Liu, QN
    Shen, QS
    Dou, XM
    Chen, YG
    Ozaki, Y
    PHYSICAL REVIEW A, 2001, 63 (05): : 541031 - 541034
  • [47] ONE-DIMENSIONAL ISING-MODEL WITH ARBITRARY SPIN
    BOWDEN, RL
    KAPLAN, DM
    JOURNAL DE PHYSIQUE, 1976, 37 (7-8): : 803 - 811
  • [48] ON ONE-DIMENSIONAL HEAT CONDUCTION WITH AN ARBITRARY HEATING RATE
    SUTTON, GW
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (11): : 854 - 855
  • [49] The determinant of one-dimensional polyharmonic operators of arbitrary order
    Freitas, Pedro
    Lipovsky, Jiri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (12)
  • [50] ONE-DIMENSIONAL HEAT CONDUCTION WITH ARBITRARY HEATING RATE
    CHEN, SY
    JOURNAL OF THE AEROSPACE SCIENCES, 1961, 28 (04): : 336 - 337