Liouville theorems for the sub-linear Lane-Emden equation on the half space
被引:0
|
作者:
Luo, Huxiao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, 688 Yingbin Ave, Jinhua 321004, Zhejiang, Peoples R China
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R ChinaZhejiang Normal Univ, Dept Math, 688 Yingbin Ave, Jinhua 321004, Zhejiang, Peoples R China
Luo, Huxiao
[1
,2
]
机构:
[1] Zhejiang Normal Univ, Dept Math, 688 Yingbin Ave, Jinhua 321004, Zhejiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
comparison principles;
Lane-Emden equation;
Liouville theorems;
method of moving planes;
D O I:
10.1017/prm.2024.98
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, we study the following Dirichlet problem to the sub-linear Lane-Emden equation {-Delta u=u(p), u(x)>= 0, x is an element of R-+(n), u(x)equivalent to 0, x is an element of partial derivative R-+(n), where n >= 3, 0<p <= 1. By establishing an equivalent integral equation, we give a lower bound of the Kelvin transformation u((sic)). Then, by constructing a new comparison function, we apply the maximum principle based on comparisons and the method of moving planes to obtain that u only depends on x(n). Based on this, we prove the non-existence of non-negative solutions.
机构:
Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
机构:
Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
Yip, Kenny L. S.
Chan, T. K.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USAChinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
Chan, T. K.
Leung, P. T.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China