Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring

被引:2
|
作者
Zhang, Huicong [1 ]
Xie, Haozhe [2 ]
Yao, Hongxun [1 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Nanyang Technol Univ, S Lab, Singapore, Singapore
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024 | 2024年
关键词
D O I
10.1109/CVPR52733.2024.00258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video deblurring relies on leveraging information from other frames in the video sequence to restore the blurred regions in the current frame. Mainstream approaches employ bidirectional feature propagation, spatio-temporal transformers, or a combination of both to extract information from the video sequence. However, limitations in memory and computational resources constraints the temporal window length of the spatio-temporal transformer, preventing the extraction of longer temporal contextual information from the video sequence. Additionally, bidirectional feature propagation is highly sensitive to inaccurate optical flow in blurry frames, leading to error accumulation during the propagation process. To address these issues, we propose BSSTNet, Blur-aware Spatio-temporal Sparse Transformer Network. It introduces the blur map, which converts the originally dense attention into a sparse form, enabling a more extensive utilization of information throughout the entire video sequence. Specifically, BSSTNet (1) uses a longer temporal window in the transformer, leveraging information from more distant frames to restore the blurry pixels in the current frame. (2) introduces bidirectional feature propagation guided by blur maps, which reduces error accumulation caused by the blur frame. The experimental results demonstrate the proposed BSSTNet outperforms the state-of-the-art methods on the GoPro and DVD datasets.
引用
收藏
页码:2673 / 2681
页数:9
相关论文
共 50 条
  • [41] Spatio-temporal segmentation for video surveillance
    Sun, HZ
    Feng, T
    Tan, TN
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 843 - 846
  • [42] VideoZoom Spatio-Temporal Video Browser
    Smith, John R.
    IEEE TRANSACTIONS ON MULTIMEDIA, 1999, 1 (02) : 157 - 171
  • [43] Spatio-temporal video contrast enhancement
    Celik, Turgay
    IET IMAGE PROCESSING, 2013, 7 (06) : 543 - 555
  • [44] Spatio-temporal querying in video databases
    Köprülü, M
    Çiçekli, NK
    Yazici, A
    FLEXIBLE QUERY ANSWERING SYSTEMS, PROCEEDINGS, 2002, 2522 : 251 - 262
  • [45] Spatio-Temporal Perturbations for Video Attribution
    Li, Zhenqiang
    Wang, Weimin
    Li, Zuoyue
    Huang, Yifei
    Sato, Yoichi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2043 - 2056
  • [46] Spatio-temporal querying in video databases
    Koprulu, M
    Cicekli, NK
    Yazici, A
    INFORMATION SCIENCES, 2004, 160 (1-4) : 131 - 152
  • [47] SpFormer: Spatio-Temporal Modeling for Scanpaths with Transformer
    Zhong, Wenqi
    Yu, Linzhi
    Xia, Chen
    Han, Junwei
    Zhang, Dingwen
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7605 - 7613
  • [48] Diagnostic spatio-temporal transformer with faithful encoding
    Labaien, Jokin
    Ide, Tsuyoshi
    Chen, Pin-Yu
    Zugasti, Ekhi
    De Carlos, Xabier
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [49] STAR++: Rethinking spatio-temporal cross attention transformer for video action recognition
    Dasom Ahn
    Sangwon Kim
    Byoung Chul Ko
    Applied Intelligence, 2023, 53 : 28446 - 28459
  • [50] Spatio-temporal frequency analysis of motion blur reduction on LCDS
    van Heesch, F. H.
    Klompenhouwer, M. A.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2097 - 2100