Hypergraph Anti-Ramsey Theorems

被引:0
|
作者
Liu, Xizhi [1 ,2 ]
Song, Jialei [3 ,4 ]
机构
[1] Univ Warwick, Math Inst, Coventry, England
[2] Univ Warwick, DIMAP, Coventry, England
[3] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-Ramsey problem; expansion of hypergraphs; hypergraph Tur & aacute; n problem; splitting hypergraphs; stability; MATCHINGS; NUMBERS; REGULARITY; LEMMA;
D O I
10.1002/jgt.23204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The anti-Ramsey number ar ( n , F ) $\text{ar}(n,F)$ of an r $r$ -graph F $F$ is the minimum number of colors needed to color the complete n $n$ -vertex r $r$ -graph to ensure the existence of a rainbow copy of F $F$ . We establish a removal-type result for the anti-Ramsey problem of F $F$ when F $F$ is the expansion of a hypergraph with a smaller uniformity. We present two applications of this result. First, we refine the general bound ar ( n , F ) = ex ( n , F - ) + o ( n r ) $\text{ar}(n,F)=\text{ex}(n,{F}_{-})+o({n}<^>{r})$ proved by Erd & odblac;s-Simonovits-S & oacute;s, where F - ${F}_{-}$ denotes the family of r $r$ -graphs obtained from F $F$ by removing one edge. Second, we determine the exact value of ar ( n , F ) $\text{ar}(n,F)$ for large n $n$ in cases where F $F$ is the expansion of a specific class of graphs. This extends results of Erd & odblac;s-Simonovits-S & oacute;s on complete graphs to the realm of hypergraphs.
引用
收藏
页码:808 / 816
页数:9
相关论文
共 50 条
  • [21] Anti-Ramsey numbers of small graphs
    Bialostocki, Arie
    Gilboa, Shoni
    Roditty, Yehuda
    ARS COMBINATORIA, 2015, 123 : 41 - 53
  • [22] Anti-Ramsey numbers of subdivided graphs
    Jiang, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (02) : 361 - 366
  • [23] Bipartite anti-Ramsey numbers of cycles
    Axenovich, M
    Jiang, T
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 9 - 28
  • [24] Anti-Ramsey number of matchings in hypergraphs
    Ozkahya, Lale
    Young, Michael
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2359 - 2364
  • [25] Anti-Ramsey colorings in several rounds
    Blokhuis, A
    Faudree, R
    Gyárfás, A
    Ruszinkó, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (01) : 1 - 18
  • [26] ANTI-RAMSEY NUMBER OF HANOI GRAPHS
    Gorgol, Izolda
    Lechowska, Anna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 285 - 296
  • [27] On the anti-Ramsey numbers of linear forests
    Xie, Tian-Ying
    Yuan, Long-Tu
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [28] Anti-Ramsey properties of random graphs
    Bohman, Tom
    Frieze, Alan
    Pikhurko, Oleg
    Smyth, Cliff
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 299 - 312
  • [29] Size and Degree Anti-Ramsey Numbers
    Alon, Noga
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 1833 - 1839
  • [30] On an anti-Ramsey threshold for random graphs
    Kohayakawa, Y.
    Konstadinidis, P. B.
    Mota, G. O.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 26 - 41