Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump-probe geometry

被引:0
|
作者
Timmer, Daniel [1 ]
Luenemann, Daniel C. [1 ]
De Sio, Antonietta [1 ,2 ]
Cerullo, Giulio [3 ,4 ]
Lienau, Christoph [1 ,2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26129 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Ctr Nanoscale Dynam CENAD, D-26129 Oldenburg, Germany
[3] Ist Foton & Nanotecnol CNR, Piazza L da Vinci 32, I-20133 Milan, Italy
[4] Politecn Milan, Dipartimento Fis, Piazza L da Vinci 32, I-20133 Milan, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 12期
关键词
EXCITON; COHERENCE; SPECTRA;
D O I
10.1063/5.0256813
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since its introduction almost three decades ago, two-dimensional electronic spectroscopy (2DES) has evolved into a mature and powerful technique to reveal the inner workings of quantum systems with high temporal and spectral resolution. In general, this technique can isolate different contributions to the nonlinear response and provides access to different dynamical quantum pathways of the system evolution. Such isolation of pathways can be achieved in different experimental geometries. In its original, fully noncollinear implementation, directional phase matching allows for such signal isolation, while in the modern commonly employed pump-probe geometry, experimentally challenging phase-cycling schemes are employed. Here, we show how rephasing, non-rephasing, and zero- and double-quantum 2DES signals can be isolated in the pump-probe geometry without a need for phase-cycling. For this, we utilize established causality restrictions of the nonlinear response, allowing us to separate the different contributions in the spectral domain. We demonstrate this using data recorded for a molecular J-aggregate, acting as an effective three-level system. This approach bridges the gap between the capabilities of shaper-based and fully noncollinear 2DES and experimentally simpler implementations, such as those based on birefringent common-path interferometers.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Direct comparison of molecular-beam vs liquid-phase pump-probe and two-dimensional spectroscopy on the example of azulene
    Solowan, Hans-Peter
    Maly, Pavel
    Brixner, Tobias
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (04):
  • [32] Inverse Problems in Pump-Probe Spectroscopy
    Tikhonov, Denis S.
    Garg, Diksha
    Schnell, Melanie
    PHOTOCHEM, 2024, 4 (01): : 57 - 110
  • [33] Pump-probe spectroscopy for the detection of bioaerosols
    Guyon, L.
    Courvoisier, F.
    Wood, V.
    Boutou, V.
    Bartelt, A.
    Roth, M.
    Rabitz, H.
    Wolf, J. P.
    JOURNAL DE PHYSIQUE IV, 2006, 135 : 185 - 186
  • [34] Two-dimensional electronic spectroscopy
    Nature Reviews Methods Primers, 3
  • [35] Two-dimensional vibrational spectroscopy. VIII. Infrared optical Kerr effect and two-color infrared pump-probe measurements
    Cho, M
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (22): : 9982 - 9992
  • [36] Two-dimensional electronic spectroscopy
    Hybl, JD
    Albrecht, AW
    Faeder, SMG
    Jonas, DM
    CHEMICAL PHYSICS LETTERS, 1998, 297 (3-4) : 307 - 313
  • [37] Two-dimensional electronic spectroscopy
    Fresch, Elisa
    Camargo, Franco V. A.
    Shen, Qijie
    Bellora, Caitlin C.
    Pullerits, Tonu
    Engel, Gregory S.
    Cerullo, Giulio
    Collini, Elisabetta
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [38] Pump-Probe Spectroscopy of Two-Body Correlations in Ultracold Gases
    Koch, Christiane P.
    Kosloff, Ronnie
    PHYSICAL REVIEW LETTERS, 2009, 103 (26)
  • [39] Two-color, intracavity pump-probe, cavity ringdown spectroscopy
    Jiang, Jun
    McCartt, A. Daniel
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (10):
  • [40] Simultaneous Electronic and Thermal Signatures in Pump-Probe Spectroscopy of Semiconductor Nanocrystal Films
    De Bellis, Francesco
    Feldman, Matias
    Delbono, Ilaria
    Royer, Sebastien
    Prado, Yoann
    Cruguel, Herve
    Lacaze, Emmanuelle
    Lhuillier, Emmanuel
    Utterback, James K.
    NANO LETTERS, 2025,