Exceptional Bound States in the Continuum

被引:1
|
作者
Valero, Adria Canos [1 ,2 ]
Sztranyovszky, Zoltan [3 ]
Muljarov, Egor A. [4 ]
Bogdanov, Andrey [5 ,6 ]
Weiss, Thomas [1 ,2 ,7 ,8 ]
机构
[1] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
[2] NAWI Graz, A-8010 Graz, Austria
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, England
[4] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, England
[5] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Sansha Rd 1777, Qingdao 266404, Peoples R China
[6] ITMO Univ, Sch Phys & Engn, Kronverkskiy St 49, St Petersburg 197101, Russia
[7] Univ Stuttgart, Phys Inst, D-70569 Stuttgart, Germany
[8] Univ Stuttgart, SCoPE, D-70569 Stuttgart, Germany
基金
奥地利科学基金会;
关键词
D O I
10.1103/PhysRevLett.134.103802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bound states in the continuum and exceptional points are unique singularities of non-Hermitian systems. In optical implementations, the former demonstrate strong enhancement of the electromagnetic field, while the latter exhibit high sensitivity to small perturbations. Hence, exceptional points are being actively investigated as next-generation optical sensors. However, at the nanoscale, their performance is strongly constrained by parasitic radiative losses. Here, we show that several bound states in the continuum can be merged into one exceptional point, forming a new kind of singularity. The resulting state inherits properties from both, namely, it does not radiate and shows extremely high sensitivity to perturbations, making it prospective for the realization of exceptional sensing at the nanoscale. We validate our theory with numerical simulations and demonstrate the formation of second- and third-order exceptional bound states in the continuum in stacked dielectric metasurfaces.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Bulk and surface bound states in the continuum
    Gallo, N. A.
    Molina, M. I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (04)
  • [32] Bound states in the continuum in multipolar lattices
    Gladyshev, Sergei
    Shalev, Artem
    Frizyuk, Kristina
    Ladutenko, Konstantin
    Bogdano, Andrey
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [33] Bound valley edge states in the continuum
    Feng, Yadian
    Zhang, Zhanyuan
    Qin, Feifei
    Lan, Zhihao
    Sha, Wei E., I
    Xu, Yi
    OPTICS LETTERS, 2022, 47 (12) : 3107 - 3110
  • [34] Interaction of plasmonic bound states in the continuum
    Cao, Fengzhao
    Zhou, Mimi
    Cheng, Chang-Wei
    LI, Haojie
    Jia, Qianwen
    Jiang, Anwen
    Lyu, Bokun
    Liu, Dahe
    Han, Dezhuan
    Gwo, Shangjr
    Shi, Jinwei
    PHOTONICS RESEARCH, 2023, 11 (05) : 724 - 731
  • [35] Bound States in Continuum in Terahertz Metasurface
    Shi Jinhui
    Li Weiyan
    Wan Shun
    Wang Yiyuan
    Qin Chunhua
    Li Zenglin
    Zhu Zheng
    Li Yuxiang
    Guan Chunying
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (18)
  • [36] Bound states in the continuum in quasiperiodic systems
    Hsueh, W. J.
    Chen, C. H.
    Chang, C. H.
    PHYSICS LETTERS A, 2010, 374 (48) : 4804 - 4807
  • [37] Bound States in the Continuum in Magnetophotonic Metasurfaces
    Chernyak, A. M.
    Barsukova, M. G.
    Shorokhov, A. S.
    Musorin, A. I.
    Fedyanin, A. A.
    JETP LETTERS, 2020, 111 (01) : 46 - 49
  • [38] Bound States in the Continuum in Magnetophotonic Metasurfaces
    A. M. Chernyak
    M. G. Barsukova
    A. S. Shorokhov
    A. I. Musorin
    A. A. Fedyanin
    JETP Letters, 2020, 111 : 46 - 49
  • [39] Topological linelike bound states in the continuum
    Takeichi, Manabu
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2019, 99 (03)
  • [40] Toroidal dipole bound states in the continuum
    He, Yuan
    Guo, Guangtao
    Feng, Tianhua
    Xu, Yi
    Miroshnichenko, Andrey E.
    PHYSICAL REVIEW B, 2018, 98 (16)