Large language models for causal hypothesis generation in science

被引:0
|
作者
Cohrs, Kai-Hendrik [1 ]
Diaz, Emiliano [1 ]
Sitokonstantinou, Vasileios [1 ]
Varando, Gherardo [1 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
来源
基金
欧洲研究理事会;
关键词
causality; large language models; hypothesis generation; science; causal discovery; LEARNING ALGORITHMS; NETWORK STRUCTURES; EQUIVALENCE; SEARCH;
D O I
10.1088/2632-2153/ada47f
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Towards the goal of understanding the causal structure underlying complex systems-such as the Earth, the climate, or the brain-integrating Large language models (LLMs) with data-driven and domain-expertise-driven approaches has the potential to become a game-changer, especially in data and expertise-limited scenarios. Debates persist around LLMs' causal reasoning capacities. However, rather than engaging in philosophical debates, we propose integrating LLMs into a scientific framework for causal hypothesis generation alongside expert knowledge and data. Our goals include formalizing LLMs as probabilistic imperfect experts, developing adaptive methods for causal hypothesis generation, and establishing universal benchmarks for comprehensive comparisons. Specifically, we introduce a spectrum of integration methods for experts, LLMs, and data-driven approaches. We review existing approaches for causal hypothesis generation and classify them within this spectrum. As an example, our hybrid (LLM + data) causal discovery algorithm illustrates ways for deeper integration. Characterizing imperfect experts along dimensions such as (1) reliability, (2) consistency, (3) uncertainty, and (4) content vs. reasoning are emphasized for developing adaptable methods. Lastly, we stress the importance of model-agnostic benchmarks.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Materials science in the era of large language models: a perspective
    Lei, Ge
    Docherty, Ronan
    Cooper, Samuel J.
    DIGITAL DISCOVERY, 2024, 3 (07): : 1257 - 1272
  • [22] Leveraging Cognitive Science for Testing Large Language Models
    Srinivasan, Ramya
    Inakoshi, Hiroya
    Uchino, Kanji
    2023 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING, AITEST, 2023, : 169 - 171
  • [23] Large Language Models are Temporal and Causal Reasoners for Video Question Answering
    Ko, Dohwan
    Lee, Ji Soo
    Kang, Wooyoung
    Roh, Byungseok
    Kim, Hyunwoo J.
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 4300 - 4316
  • [24] Benchmarking Causal Study to Interpret Large Language Models for Source Code
    Rodriguez-Cardenas, Daniel
    Palacio, David N.
    Khati, Dipin
    Burke, Henry
    Poshyvanyk, Denys
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME, 2023, : 329 - 334
  • [25] Are Large Language Models Capable of Causal Reasoning for Sensing Data Analysis?
    Hu, Zhizhang
    Zhang, Yue
    Rossi, Ryan
    Yu, Tong
    Kim, Sungchul
    Pan, Shijia
    PROCEEDINGS OF THE 2024 WORKSHOP ON EDGE AND MOBILE FOUNDATION MODELS, EDGEFM 2024, 2024, : 24 - 29
  • [26] Does Metacognitive Prompting Improve Causal Inference in Large Language Models?
    Ohtani, Ryusei
    Sakurai, Yuko
    Oyama, Satoshi
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 458 - 459
  • [27] Exploring Synergies between Causal Models and Large Language Models for Enhanced Understanding and Inference
    Sun, Yaru
    Yang, Ying
    Fu, Wenhao
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [28] Causal-Guided Active Learning for Debiasing Large Language Models
    Sun, Zhouhao
    Li Du
    Ding, Xiao
    Ma, Yixuan
    Zhao, Yang
    Qiu, Kaitao
    Liu, Ting
    Qin, Bing
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 14455 - 14469
  • [29] The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
    Liu, Xiao
    Yin, Da
    Zhang, Chen
    Feng, Yansong
    Zhao, Dongyan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9009 - 9022
  • [30] Quantitative Evaluation of Using Large Language Models and Retrieval-Augmented Generation in Computer Science Education
    Wang, Kevin Shukang
    Lawrence, Ramon
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 1183 - 1189