Solitons on Kenmotsu manifolds

被引:0
|
作者
Shukla, Sushil [1 ]
Ojha, Ayush [1 ]
机构
[1] VBS Purvanchal Univ, Fac Engn & Technol, Dept Math, Jaunpur 222003, Uttar Pradesh, India
关键词
Connection; Manifold; Solitons; 3-MANIFOLDS; RESPECT;
D O I
10.47974/JIM-1948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article properties of solitons on Kenmotsu manifolds with Da-homothetic deformation and Schouten-van Kampen connection are discussed.
引用
收藏
页码:1175 / 1183
页数:9
相关论文
共 50 条
  • [41] From the Eisenhart Problem to Ricci Solitons in f-Kenmotsu Manifolds
    Calin, Constantin
    Crasmareanu, Mircea
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (03) : 361 - 368
  • [42] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [43] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [44] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [45] On 3-dimensional f-Kenmotsu manifolds and Ricci solitons
    A. Yildiz
    U. C. De
    M. Turan
    Ukrainian Mathematical Journal, 2013, 65 : 684 - 693
  • [46] RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 91 - 100
  • [47] A study of *-Ricci-Yamabe solitons on LP-Kenmotsu manifolds
    Haseeb, Abdul
    Mofarreh, Fatemah
    Chaubey, Sudhakar Kumar
    Prasad, Rajendra
    AIMS MATHEMATICS, 2024, 9 (08): : 22532 - 22546
  • [48] η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS
    Mondal, Ashis
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 705 - 714
  • [49] On Kenmotsu manifolds
    Jun, JB
    De, UC
    Pathak, G
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 435 - 445
  • [50] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822