Nonlinear electromagnetic generalization of the Kerr-Newman solution with a cosmological constant

被引:0
|
作者
Galindo-Uriarte, Oscar [1 ]
Breton, Nora [1 ]
机构
[1] Inst Politecn Nacl Cinvestav, Ctr Invest & Estudios Avanzados, Phys Dept, POB 14-740, Mexico City, Mexico
关键词
ELECTRODYNAMICS;
D O I
10.1103/PhysRevD.110.064021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the two exact solutions of the Einstein-nonlinear electrodynamics equations that generalize the Kerr-Newman solution. We determined the generalized electromagnetic potentials using the alignment between the tetrad vectors of the metric and the eigenvectors of the electromagnetic field tensor. It turns out that there are only two possible nonlinear electromagnetic generalizations of the Kerr-Newman geometry, corresponding to different electromagnetic potentials. The new solutions possess horizons and satisfy physical energy conditions such that they can represent black holes with nonlinear electromagnetic charges, characterized by the parameters of mass, angular momentum, charge, and one nonlinear parameter; the nonlinear parameter resembles the effect of a cosmological constant, negative or positive, such that the solutions are asymptotically anti-de Sitter or de Sitter. The canonical form of the electromagnetic nonlinear energy-momentum tensor is analyzed in relation with the energy conditions; it is shown that the conformal symmetry is broken by the electromagnetic nonlinear matter; the corresponding nonlinear electromagnetic Lagrangian as a function of the coordinates is presented as well.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Kerr-Newman memory effect
    Galoppo, Marco
    Gaur, Rudeep
    Harvey-Hawes, Christopher
    PHYSICAL REVIEW D, 2025, 111 (06)
  • [32] AN EXACT ROTATING SCHWINGER DYON SOLUTION WITH THE KERR-NEWMAN METRIC
    KAMATA, M
    KASUYA, M
    PHYSICS LETTERS B, 1981, 103 (4-5) : 351 - 352
  • [33] THE GEOMETRY OF THE KERR-NEWMAN ERGOSURFACE
    KOKKOTAS, KD
    GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (08) : 829 - 839
  • [34] Kerr-Newman scalar clouds
    Benone, Carolina L.
    Crispino, Luis C. B.
    Herdeiro, Carlos
    Radu, Eugen
    PHYSICAL REVIEW D, 2014, 90 (10)
  • [35] STUDIES IN KERR-NEWMAN METRIC
    BOSE, SK
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) : 772 - 775
  • [36] RADIATING KERR-NEWMAN METRIC
    GONZALEZ, C
    HERRERA, L
    JIMENEZ, J
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 77 - 77
  • [37] On the "Dyadotorus" of the Kerr-Newman spacetime
    Cherubini, Christian
    Geralico, Andrea
    Rueda H, J. A.
    Ruffini, Remo
    RELATIVISTIC ASTROPHYSICS, 2008, 966 : 123 - +
  • [38] Symmetries of the Kerr-Newman spacetime
    Keane, Aidan J.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (09)
  • [39] Stability of the lepton bag model based on the Kerr-Newman solution
    Burinskii, A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 121 (05) : 819 - 827
  • [40] Kerr-Newman solution and energy in teleparallel equivalent of Einstein theory
    Nashed, Gamal G. L.
    MODERN PHYSICS LETTERS A, 2007, 22 (14) : 1047 - 1056