Investigating the Usability of XAI in AI-based Image Classification

被引:0
|
作者
Stodt, Jan [1 ]
Reich, Christoph [1 ]
Clarke, Nathan [2 ]
机构
[1] Furtwangen Univ, D-78120 Furtwangen, Germany
[2] Univ Plymouth, Portland Sq, Plymouth PL4 8AA, Devon, England
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 24期
关键词
AI-based Image processing; XAI; Investigation; Usability; Non-AI Experts;
D O I
10.1016/j.ifacol.2024.11.064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the usability of XAI (Explainable Artificial Intelligence) in AI-based image classification, particularly for non-experts like medical professionals. XAI provides the user of AI systems with an explanation for a particular decision. But the usability of such explanations remains an open point of discussion. The investigation highlights that there is a need for integrating explainability in the design of the classification approach. This paper will present an approach to classify the parts of an object separately and then utilize a white box model (decision tree) for the final classification. This is enriched by additional information, achieving understandability of the classification. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:362 / 367
页数:6
相关论文
共 50 条
  • [41] Data Acquisition System for AI-based Odor Classification at the Edge
    Emmenegger, Silvio
    Kummer, Raphael
    Gisler, Thomas
    Zumbuhl, Christoph
    Wassner, Jurgen
    Taghipour, Armin
    2024 IEEE INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE, ISOEN, 2024,
  • [42] AI-Based Task Classification With Pressure Insoles for Occupational Safety
    O'Sullivan, Patricia
    Menolotto, Matteo
    Visentin, Andrea
    O'Flynn, Brendan
    Komaris, Dimitrios-Sokratis
    IEEE ACCESS, 2024, 12 : 21347 - 21357
  • [43] Automated Classification of Breast Lesions: A Comprehensive AI-Based Approach
    Shaker, Nada
    Kellough, David
    Etoz, Sevde
    Goodman, Shaya
    Vecsler, Manuela
    Lujan, Giovanni
    Frankel, Wendy
    Parwani, Anil
    Li, Zaibo
    LABORATORY INVESTIGATION, 2024, 104 (03) : S265 - S266
  • [44] Liver Disease Classification - An XAI Approach to Biomedical AI
    Agbozo E.
    Balungu D.M.
    Informatica (Slovenia), 2024, 48 (01): : 79 - 90
  • [45] AI-based classification of CAN measurements for network and ECU identification
    Ralf Lutchen
    Andreas Krätschmer
    Hans Christian Reuss
    Automotive and Engine Technology, 2022, 7 (3-4) : 317 - 330
  • [46] ASDG - An AI-based framework for automatic classification of impact on the SDGs
    Sanchez-Roncero, Alejandro
    Garibo-i-Orts, Oscar
    Alberto Conejero, J.
    Eivazi, Hamidreza
    Rosenberg, Emelie
    Fuso-Nerini, Francesco
    Garcia-Martinez, Javier
    Hoyas, Sergio
    Vinuesa, Ricardo
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON THEORY AND PRACTICE OF ELECTRONIC GOVERNANCE, ICEGOV 2022, 2022, : 119 - 123
  • [47] An AI-Based Image Quality Control Framework for Knee Radiographs
    Hongbiao Sun
    Wenwen Wang
    Fujin He
    Duanrui Wang
    Xiaoqing Liu
    Shaochun Xu
    Baolian Zhao
    Qingchu Li
    Xiang Wang
    Qinling Jiang
    Rong Zhang
    Shiyuan Liu
    Yi Xiao
    Journal of Digital Imaging, 2023, 36 (5) : 2278 - 2289
  • [48] When AI-based image analysis gets in clinical trials
    Mesange, P.
    Bonnet, M.
    Deen, J.
    ANNALS OF ONCOLOGY, 2021, 32 : S928 - S928
  • [49] An AI-Based Neuroevolution Scaffolding for Detecting Neovascularization in Retinal Image
    Jaheda, Shaik
    Farhana, Shaik
    Sadana, Jannam
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 259 - 268
  • [50] An AI-Based Image Quality Control Framework for Knee Radiographs
    Sun, Hongbiao
    Wang, Wenwen
    He, Fujin
    Wang, Duanrui
    Liu, Xiaoqing
    Xu, Shaochun
    Zhao, Baolian
    Li, Qingchu
    Wang, Xiang
    Jiang, Qinling
    Zhang, Rong
    Liu, Shiyuan
    Xiao, Yi
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2278 - 2289