AN EXPERIMENTAL STUDY ON PERFORMANCE DEGRADATION AND RECOVERY PROTOCOLS OF MODULE STACK PROTON EXCHANGE MEMBRANE FUEL CELL UNDER DYNAMIC LOAD

被引:0
|
作者
Quan Thien Phan Nghiem [1 ]
Huu Linh Nguyen [1 ]
Kim, Younghyeon [1 ]
Yu, Sangseok [2 ]
机构
[1] Chungnam Natl Univ, Grad Sch, Dept Mech Engn, Daejeon, South Korea
[2] Chungnam Natl Univ, Dept Mech Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Proton Exchange Membrane Fuel Cell; Degradation; Voltage Cycling; Shutdown; Recovery;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the performance degradation of three-cell proton exchange membrane fuel cell (PEMFC) stacks was investigated in dynamic working conditions. A customized current cycle based on the World Harmonized Vehicle Cycle was developed as a test cycle. Long-term experiments, consisting of equal-duration test periods, were conducted at stack temperatures of 60 degrees C and 70 degrees C. The test cycle was repeated in each test period, followed by a recovery stage. To investigate the responses of PEMFC stacks during tests, the polarization curves were measured at the beginning and end of each test period, as well as after the recovery stages. Based on the degradation assessment, the more severe working temperature was selected as the test condition for assessing the recovery efficiency of the shutdown and the voltage cycling method. The experimental results indicated that the temperature of 70 degrees C resulted in a higher deterioration of stack voltage than the case of 60 degrees C. Specifically, the stack voltage measured at 0.5 A/cm2 in the case of 60 degrees C and 70 degrees C dropped by 1.75% and 3.59%, respectively, after 100 hours. Regarding the recovery effectiveness, the shutdown method was more efficient than the voltage cycling method as time progressed. At 0.8 A/cm2, for instance, the recovery efficiency of the shutdown method maintained at 77.25%, whereas the figure of the voltage cycling method decreased to 53.46% after 100 hours. The ohmic region had the highest recovery efficiency compared to the other regions with the shutdown approach. This study emphasized the recovery capability of the shutdown method and motivated further works to shorten its duration for practical conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] The effect of Compressive load on proton exchange membrane fuel cell stack performance and Behavior
    Fekrazad, N.
    Bergman, T. L.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (08): : 1004 - 1013
  • [12] Experimental Study of Proton Exchange Membrane Fuel Cell Purge with Load
    Zhu J.
    Liu C.
    Liu J.
    Xu S.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 : 254 - 259
  • [13] An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions
    Jian, Qifei
    Zhao, Yang
    Wang, Haoting
    ENERGY, 2015, 80 : 740 - 745
  • [14] An experimental study on the performance of proton exchange membrane fuel cell
    Kellegoz, M.
    Ozkan, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (3-4): : 399 - 406
  • [15] Dynamic characteristics of the proton exchange membrane fuel cell module
    Cieslinski, Janusz T.
    Kaczmarczyk, Tomasz Z.
    Dawidowicz, Bartosz
    ARCHIVES OF THERMODYNAMICS, 2018, 39 (04) : 125 - 140
  • [16] Degradation behavior of a proton exchange membrane fuel cell stack under dynamic cycles between idling and rated condition
    Wang, Guangjin
    Huang, Fei
    Yu, Yi
    Wen, Sheng
    Tu, Zhengkai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (09) : 4471 - 4481
  • [17] Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack
    Chu, Tiankuo
    Zhang, Ruofan
    Wang, Yanbo
    Ou, Mingyang
    Xie, Meng
    Shao, Hangyu
    Yang, Daijun
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    ENERGY, 2021, 219
  • [18] Investigation on performance recovery and consistency of proton exchange membrane fuel cell stack under automotive accelerated stress test
    Li, Ruitao
    Ma, Tiancai
    Guo, Huijin
    Zhao, Jinghui
    Zhou, Julong
    Shi, Lei
    Lin, Weikang
    Yao, Naiyuan
    Yang, Yanbo
    APPLIED ENERGY, 2025, 383
  • [19] Membrane performance comparison in a proton exchange membrane fuel cell (PEMFC) stack
    Kim, Sunhoe
    Hong, Inkwon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2010, 16 (06) : 901 - 905
  • [20] Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell
    Lim, B. H.
    Majlan, E. H.
    Daud, W. R. W.
    Rosli, M. I.
    Husaini, T.
    ENERGY, 2019, 169 : 338 - 343