Application of Artificial Intelligence in Thoracic Radiology: A Narrative Review

被引:0
|
作者
Lim, Woo Hyeon [1 ]
Kim, Hyungjin [1 ,2 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
关键词
Artificial Intelligence; Deep Learning; Thoracic Radiology; OBSTRUCTIVE PULMONARY-DISEASE; LARGE LANGUAGE MODELS; LUNG-CANCER; QUANTITATIVE CT; CLASSIFICATION; TUBERCULOSIS; MULTICENTER; IMAGES; AI;
D O I
10.4046/trd.2024.0062
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Thoracic radiology has emerged as a primary field in which artificial intelligence (AI) is extensively researched. Recent advancements highlight the potential to enhance radiologists' performance through AI. AI aids in detecting and classifying abnormalities, and in quantifying both normal and abnormal anatomical structures. Additionally, it facilitates prognostication by leveraging these quantitative values. This review article will discuss the recent achievements of AI in thoracic radiology, focusing primarily on deep learning, and explore the current limitations and future directions of this cutting-edge technique.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 50 条
  • [41] Artificial intelligence in radiology
    Ahmed Hosny
    Chintan Parmar
    John Quackenbush
    Lawrence H. Schwartz
    Hugo J. W. L. Aerts
    Nature Reviews Cancer, 2018, 18 : 500 - 510
  • [42] Artificial intelligence in radiology
    Faggioni, Lorenzo
    Coppola, Francesca
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 12
  • [43] Artificial intelligence in radiology
    Hosny, Ahmed
    Parmar, Chintan
    Quackenbush, John
    Schwartz, Lawrence H.
    Aerts, Hugo J. W. L.
    NATURE REVIEWS CANCER, 2018, 18 (08) : 500 - 510
  • [44] Thoracic Radiologists' Versus Computer Scientists' Perspectives on the Future of Artificial Intelligence in Radiology
    Eltorai, Adam E. M.
    Bratt, Alexander K.
    Guo, Haiwei H.
    JOURNAL OF THORACIC IMAGING, 2020, 35 (04) : 255 - 259
  • [45] Artificial Intelligence in Thoracic Radiology. A Challenge in COVID-19 Times?
    Corbacho Abelaira, Maria Dolores
    Ruano-Ravina, Alberto
    Fernandez-Villar, Alberto
    ARCHIVOS DE BRONCONEUMOLOGIA, 2021, 57 : 15 - 16
  • [46] Application of artificial intelligence (AI) and machine learning (ML) in pediatric epilepsy: a narrative review
    Kim, Hunmin
    Hwang, Hee
    PEDIATRIC MEDICINE, 2022, 5
  • [47] Application possibilities of artificial intelligence in facial vascularized composite allotransplantation-a narrative review
    Knoedler, Leonard
    Knoedler, Samuel
    Allam, Omar
    Remy, Katya
    Miragall, Maximilian
    Safi, Ali-Farid
    Alfertshofer, Michael
    Pomahac, Bohdan
    Kauke-Navarro, Martin
    FRONTIERS IN SURGERY, 2023, 10
  • [48] Reviewing the relationship between machines and radiology: the application of artificial intelligence
    Ahmad, Rani
    ACTA RADIOLOGICA OPEN, 2021, 10 (02)
  • [49] A scoping review of artificial intelligence applications in thoracic surgery
    Seastedt, Kenneth P.
    Moukheiber, Dana
    Mahindre, Saurabh A.
    Thammineni, Chaitanya
    Rosen, Darin T.
    Watkins, Ammara A.
    Hashimoto, Daniel A.
    Hoang, Chuong D.
    Kpodonu, Jacques
    Celi, Leo A.
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2022, 61 (02) : 239 - 248
  • [50] Artificial Intelligence in Radiology: Overview of Application Types, Design, and Challenges
    Moassefi, Mana
    Faghani, Shahriar
    Khosravi, Bardia
    Rouzrokh, Pouria
    Erickson, Bradley J.
    SEMINARS IN ROENTGENOLOGY, 2023, 58 (02) : 170 - 177