Single-cell nascent RNA sequencing unveils coordinated global transcription

被引:13
|
作者
Mahat, Dig B. [1 ,2 ]
Tippens, Nathaniel D. [1 ,2 ]
Martin-Rufino, Jorge D. [3 ]
Waterton, Sean K. [1 ,2 ,4 ]
Fu, Jiayu [1 ,2 ,5 ]
Blatt, Sarah E. [1 ,2 ,6 ]
Sharp, Phillip A. [1 ,2 ]
机构
[1] MIT, Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[5] Northwestern Univ, Interdisciplinary Biol Sci Grad Program, Evanston, IL USA
[6] Exact Sci, Madison, WI USA
关键词
GENE-EXPRESSION; SUPER-ENHANCERS; GENOME; IDENTIFICATION; POLYMERASE; INITIATION; PROMOTERS; ELEMENTS; ARCHITECTURE; DYNAMICS;
D O I
10.1038/s41586-024-07517-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers(1,2). Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations(3). However, fundamental questions about the temporal regulation of transcription and enhancer-gene coordination remain unanswered, primarily because of the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq-a new single-cell nascent RNA sequencing assay that uses click chemistry-and unveil coordinated transcription throughout the genome. We demonstrate the episodic nature of transcription and the co-transcription of functionally related genes. scGRO-seq can estimate burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells and can leverage replication-dependent non-polyadenylated histone gene transcription to elucidate cell cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq enables the identification of networks of enhancers and genes. Our results suggest that the bursting of transcription at super-enhancers precedes bursting from associated genes. By imparting insights into the dynamic nature of global transcription and the origin and propagation of transcription signals, we demonstrate the ability of scGRO-seq to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
引用
收藏
页码:216 / +
页数:24
相关论文
共 50 条
  • [41] Clinical Perspectives of Single-Cell RNA Sequencing
    Kim, Nayoung
    Eum, Hye Hyeon
    Lee, Hae-Ock
    BIOMOLECULES, 2021, 11 (08)
  • [42] The Application of Single-Cell RNA Sequencing in Vaccinology
    Noe, Andres
    Cargill, Tamsin N.
    Nielsen, Carolyn M.
    Russell, Andrew J. C.
    Barnes, Eleanor
    JOURNAL OF IMMUNOLOGY RESEARCH, 2020, 2020
  • [43] Single-cell RNA sequencing in orthopedic research
    Wang, Tao
    Wang, Ling
    Zhang, Liping
    Long, Yubin
    Zhang, Yingze
    Hou, Zhiyong
    BONE RESEARCH, 2023, 11 (01)
  • [44] Crafting a blueprint for single-cell RNA sequencing
    Denyer, Tom
    Timmermans, Marja C. P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 92 - 103
  • [45] Single-Cell RNA Sequencing in Hematological Diseases
    Zhu, Yue
    Huang, Yaohui
    Tan, Yun
    Zhao, Weili
    Tian, Qiang
    PROTEOMICS, 2020, 20 (13)
  • [46] Single-cell RNA sequencing at isoform resolution
    Macosko, Evan Z.
    NATURE BIOTECHNOLOGY, 2020, 38 (06) : 697 - 698
  • [47] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [48] Single-cell RNA sequencing in orthopedic research
    Tao Wang
    Ling Wang
    Liping Zhang
    Yubin Long
    Yingze Zhang
    Zhiyong Hou
    Bone Research, 2023, (01) : 89 - 107
  • [49] The Technology and Biology of Single-Cell RNA Sequencing
    Kolodziejczyk, Aleksandra A.
    Kim, Jong Kyoung
    Svensson, Valentine
    Marioni, John C.
    Teichmann, Sarah A.
    MOLECULAR CELL, 2015, 58 (04) : 610 - 620
  • [50] Computational Methods for Single-Cell RNA Sequencing
    Hie, Brian
    Peters, Joshua
    Nyquist, Sarah K.
    Shalek, Alex K.
    Berger, Bonnie
    Bryson, Bryan D.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020, 2020, 3 : 339 - 364