Sensitivity analysis and Bayesian calibration of a dynamic wind farm control model: FLORIDyn

被引:1
|
作者
Dighe, Vinit V. [1 ]
Becker, Marcus [1 ]
Gocmen, Tuhfe [2 ]
Sanderse, Benjamin [3 ]
van Wingerden, Jan-Willem [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, NL-2628 CD Delft, Netherlands
[2] Tech Univ Denmark, Dept Wind Energy, Riso Campus, Roskilde, Denmark
[3] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
关键词
D O I
10.1088/1742-6596/2265/2/022062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
FLORIDyn is a parametric control-oriented dynamic model suitable to predict the dynamic wake interactions between wind turbines in a wind farm. In order to improve the accuracy of FLORIDyn, this study proposes to calibrate the tuning parameters present in the model by employing a probabilistic setting using the UQ4WIND framework. The strategy relies on constructing a surrogate model (based on polynomial chaos expansion), which is then used to perform both global sensitivity analysis and Bayesian calibration. For our analysis, a nine wind turbine configuration in a yawed setting constitutes the test case. The results of sensitivity analysis offer valuable insight into the time-dependent influence of the model parameters onto the model output. The model parameter tied to the turbine efficiency appear to be the most sensitive parameter affecting the model output. The calibrated FLORIDyn model using the Bayesian approach yield predictions much closer to the measurement data, which is equipped with an uncertainty estimate.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data
    Hosseini, S. Hossein
    Tang, Choon Yik
    Jiang, John N.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2014, 5 (01) : 343 - 350
  • [12] Dynamic Bayesian sensitivity analysis of a myocardial metabolic model
    Calvetti, D.
    Hageman, R.
    Occhipinti, R.
    Somersalo, E.
    MATHEMATICAL BIOSCIENCES, 2008, 212 (01) : 1 - 21
  • [13] Dynamic Flow Modelling for Model-Predictive Wind Farm Control
    van den Broek, Maarten J.
    van Wingerden, Jan-Willem
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [14] A control-oriented dynamic wind farm flow model: "WFSim"
    Boersma, S.
    Gebraad, P. M. O.
    Vali, M.
    Doekemeijer, B. M.
    van Wingerden, J. W.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [15] Wind Farm Layout Sensitivity Analysis and Probabilistic Model of Landowner Decisions
    Chen, Le
    MacDonald, Erin
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2017, 139 (03):
  • [16] Comparative Analysis of Wind Farm Simulators for Wind Farm Control
    Kim, Minjeong
    Lim, Hyeyeong
    Park, Sungsu
    ENERGIES, 2023, 16 (09)
  • [17] Bayesian uncertainty quantification framework for wake model calibration and validation with historical wind farm power data
    Aerts, Frederik
    Lanzilao, Luca
    Meyers, Johan
    WIND ENERGY, 2023, 26 (08) : 786 - 802
  • [18] BAYESIAN ANALYSIS OF A CALIBRATION MODEL
    Lira, Ignacio
    Grientschnig, Dieter
    XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2335 - 2337
  • [19] Dynamic Analysis of Offshore Wind Farm with PM Wind Generators using Simplified Model
    Rosyadi, Marwan
    Umemura, Atsushi
    Takahashi, Rion
    Tamura, Junji
    Park, Minwon
    2013 IEEE GRENOBLE POWERTECH (POWERTECH), 2013,
  • [20] Experimental analysis of the wind farm and numerical site calibration
    Kamio, T.
    Iida, M.
    Arakawa, C.
    FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT ASME/JSME FLUIDS ENGINEERING SUMMER CONFERENCE, VOL 2, PTS A AND B, 2007, : 1103 - 1108