Taxonomic framework for neural network-based anomaly detection in bridge monitoring

被引:0
|
作者
Bayane, Imane [1 ]
Leander, John [1 ]
Karoumi, Raid [1 ]
机构
[1] KTH Royal Inst Technol, Struct Engn & Bridges, Brinellvagen 23, S-10044 Stockholm, Sweden
关键词
Anomaly detection; Taxonomy; Neural network; Bridge; Monitoring; Framework; TIME-SERIES; OUTLIER DETECTION;
D O I
10.1016/j.autcon.2025.106113
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate differentiation between damage-related anomalies and data errors is a critical challenge in bridge monitoring. This paper presents a data-driven framework for anomaly detection and classification, addressing the question: How can anomalies be classified in multi-sensor bridge monitoring to distinguish structural changes from noise? The framework combines an adapted anomaly taxonomy with a deep neural network trained on synthetic data. It is validated using long-term monitoring data from a railway bridge, incorporating strain gauges, accelerometers, and an inclinometer. In offline training, the model achieves high precision, recall, and F1-scores, effectively detecting anomaly classes across sensor types. For online prediction, it provides anomaly type percentages and visualizations over daily, weekly, and annual timeframes, distinguishing frequent noiserelated anomalies from rare anomalies signaling structural changes. Requiring one month of training data, the framework delivers a scalable solution for bridge monitoring and lays the groundwork for future self-learning anomaly detection in infrastructure management.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multimodal Deep Neural Network-Based Sensor Data Anomaly Diagnosis Method for Structural Health Monitoring
    Nong, Xingzhong
    Luo, Xu
    Lin, Shan
    Ruan, Yanmei
    Ye, Xijun
    BUILDINGS, 2023, 13 (08)
  • [42] An artificial neural network-based fall detection
    Yoo, SunGil
    Oh, Dongik
    INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT, 2018, 10
  • [43] Artificial Neural Network-based Fault Detection
    Khelifi, Asma
    Ben Lakhal, Nadhir Mansour
    Gharsallaoui, Hajer
    Nasri, Othman
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 1017 - 1022
  • [44] Neural Network-based Framework for Data Stream Mining
    Silva, Bruno
    Marques, Nuno
    PROCEEDINGS OF THE SIXTH STARTING AI RESEARCHERS' SYMPOSIUM (STAIRS 2012), 2012, 241 : 294 - +
  • [45] A neural network-based framework for financial model calibration
    Liu, Shuaiqiang
    Borovykh, Anastasia
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2019, 9 (01)
  • [46] A neural network-based framework for financial model calibration
    Shuaiqiang Liu
    Anastasia Borovykh
    Lech A. Grzelak
    Cornelis W. Oosterlee
    Journal of Mathematics in Industry, 9
  • [47] Deep neural network-based secure healthcare framework
    Aldaej A.
    Ahanger T.A.
    Ullah I.
    Neural Computing and Applications, 2024, 36 (28) : 17467 - 17482
  • [48] Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework
    Ali, Muhammad Umair
    Khalid, Majdi
    Alshanbari, Hanan
    Zafar, Amad
    Lee, Seung Won
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [49] Cascaded Neural Network with Anomaly Detection for Optical Performance Monitoring
    Li, Yuanjian
    Zhang, Jing
    Hu, Shaohua
    Zhang, Wanting
    Yi, Xingwen
    Yu, Zhenming
    Xu, Bo
    Qiu, Kun
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [50] Improving Network-Based Anomaly Detection in Smart Home Environment
    Li, Xiaonan
    Ghodosi, Hossein
    Chen, Chao
    Sankupellay, Mangalam
    Lee, Ickjai
    SENSORS, 2022, 22 (15)