Strong global convergence properties of algorithms for nonlinear symmetric cone programming

被引:0
|
作者
Andreani, R. [1 ]
Haeser, G. [2 ]
Ramos, A. [3 ]
Santos, D. O. [4 ]
Secchin, L. D. [5 ]
Serranoni, A. [6 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[3] Univ Tarapaca, Dept Matemat, Arica, Chile
[4] Univ Fed Sao Paulo, Paulista Sch Polit Econ & Business, Osasco, SP, Brazil
[5] Univ Fed Espirito Santo, Dept Appl Math, Sao Mateus, ES, Brazil
[6] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear symmetric cone optimization; Sequential optimality conditions; Numerical algorithms; Global convergence; INTERIOR-POINT METHODS; AUGMENTED LAGRANGIAN-METHODS; OPTIMALITY CONDITIONS; CONSTRAINT QUALIFICATIONS; OPTIMIZATION; DIFFERENTIABILITY; SEMIDEFINITE; CONVEXITY;
D O I
10.1007/s10589-024-00642-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Sequential optimality conditions have played a major role in establishing strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is handled defines different optimality conditions and is fundamental to achieving a strong condition. Typically, one uses the inner product structure to measure complementarity, which provides a general approach to conic optimization problems, even in the infinite-dimensional case. In this paper we exploit the Jordan algebraic structure of symmetric cones to measure complementarity, resulting in a stronger sequential optimality condition related to the well-known complementary approximate Karush-Kuhn-Tucker conditions in standard nonlinear programming. Our results improve some known results in the setting of semidefinite programming and second-order cone programming in a unified framework. In particular, we obtain global convergence that are stronger than those known for augmented Lagrangian and interior point methods for general symmetric cones.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] ON THE GLOBAL CONVERGENCE OF NONLINEAR-PROGRAMMING ALGORITHMS
    SCHITTKOWSKI, K
    JOURNAL OF MECHANISMS TRANSMISSIONS AND AUTOMATION IN DESIGN-TRANSACTIONS OF THE ASME, 1985, 107 (04): : 454 - 458
  • [2] Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming
    Roberto Andreani
    Gabriel Haeser
    Leonardo M. Mito
    C. Héctor Ramírez
    Thiago P. Silveira
    Journal of Optimization Theory and Applications, 2022, 195 : 42 - 78
  • [3] Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming
    Andreani, Roberto
    Haeser, Gabriel
    Mito, Leonardo M.
    Hector Ramirez, C.
    Silveira, Thiago P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (01) : 42 - 78
  • [4] On the global convergence of interior-point nonlinear programming algorithms
    Haeser, Gabriel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (02): : 125 - 138
  • [5] Interior-point ℓ2-penalty methods for nonlinear programming with strong global convergence properties
    L. Chen
    D. Goldfarb
    Mathematical Programming, 2006, 108 : 1 - 36
  • [6] Duality Results of Nonlinear Symmetric Cone Programming
    Jiang, Xiaoqin
    COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2012, 316 : 498 - 502
  • [7] CONVERGENCE CONDITIONS FOR NONLINEAR PROGRAMMING ALGORITHMS
    ZANGWILL, WI
    MANAGEMENT SCIENCE SERIES A-THEORY, 1969, 16 (01): : 1 - 13
  • [8] GLOBAL CONVERGENCE OF AN INEXACT INTERIOR-POINT METHOD FOR CONVEX QUADRATIC SYMMETRIC CONE PROGRAMMING
    Pirhaji, M.
    Mansouri, H.
    Zangiabadi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (06): : 1363 - 1385
  • [9] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Andreani, Roberto
    Fukuda, Ellen H.
    Haeser, Gabriel
    Santos, Daiana O.
    Secchin, Leonardo D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 1 - 33
  • [10] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Roberto Andreani
    Ellen H. Fukuda
    Gabriel Haeser
    Daiana O. Santos
    Leonardo D. Secchin
    Journal of Optimization Theory and Applications, 2024, 200 : 1 - 33