Duality Results of Nonlinear Symmetric Cone Programming

被引:0
|
作者
Jiang, Xiaoqin [1 ]
机构
[1] Wuhan Yangtze Business Univ, Dept Publ Basic, Wuhan 430065, Peoples R China
关键词
Nonlinear symmetric cone programming; weak duality theorem; strong duality; saddle point theorem; EUCLIDEAN JORDAN ALGEBRAS; INTERIOR-POINT ALGORITHMS; COMPLEMENTARITY-PROBLEMS; SMOOTHING ALGORITHM; CONVERGENCE; EXTENSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There recently has been much interest in studying some optimization problems over symmetric cones. In this paper, we discuss the Lagrange dual theory of tonlinear symmetric cone programming, including the weak duality theorem, the strong duality theorem, and the saddle point theorem.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [1] SYMMETRIC DUALITY IN NONLINEAR PROGRAMMING
    BAZARAA, MS
    GOODE, JJ
    OPERATIONS RESEARCH, 1973, 21 (01) : 1 - 9
  • [2] Converse duality in nonlinear programming with cone constraints
    Yang, XM
    Yang, XQ
    Teo, KL
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (02) : 350 - 354
  • [3] SYMMETRIC DUALITY FOR NONLINEAR-PROGRAMMING IN COMPLEX SPACE
    KAUL, RN
    RANI, O
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (08): : 483 - 484
  • [4] Symmetric duality for a class of nonlinear fractional programming problems
    Yang, XM
    Teo, KL
    Yang, XQ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (01) : 7 - 15
  • [5] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Andreani, Roberto
    Fukuda, Ellen H.
    Haeser, Gabriel
    Santos, Daiana O.
    Secchin, Leonardo D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 1 - 33
  • [6] Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
    Roberto Andreani
    Ellen H. Fukuda
    Gabriel Haeser
    Daiana O. Santos
    Leonardo D. Secchin
    Journal of Optimization Theory and Applications, 2024, 200 : 1 - 33
  • [7] HIGHER-ORDER SYMMETRIC DUALITY FOR MULTIOBJECTIVE PROGRAMMING WITH CONE CONSTRAINTS
    Tang, Liping
    Yang, Xinmin
    Gao, Ying
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (04) : 1873 - 1884
  • [8] Non-differentiable symmetric duality for multiobjective programming with cone constraints
    Kim, Moon Hee
    Kim, Do Sang
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 188 (03) : 652 - 661
  • [9] On the approximate augmented Lagrangian for nonlinear symmetric cone programming
    Liu, Yong-Jin
    Zhang, Li-Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1210 - 1225
  • [10] A semismooth Newton method for nonlinear symmetric cone programming
    Lingchen Kong
    Qingmin Meng
    Mathematical Methods of Operations Research, 2012, 76 : 129 - 145