Effect of zirconia addition on laser powder bed fusion of Inconel 718-zirconia composite

被引:0
|
作者
Jiang, Cho-Pei [1 ,2 ]
Maidhah, Andi Ard [3 ,4 ]
Wibisono, Alvian Toto [5 ]
Toyserkani, Ehsan [6 ]
Macek, Wojciech [7 ]
Ramezani, Maziar [8 ]
机构
[1] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, High Value Biomat Res & Commercializat Ctr, Taipei 10608, Taiwan
[3] Natl Taipei Univ Technol, Coll Mech & Elect Engn, Taipei 10608, Taiwan
[4] Univ Borneo Tarakan, Dept Mech Engn, Tarakan, Indonesia
[5] Inst Teknol Sepuluh Nopember, Dept Mat & Met Engn, Surabaya, Indonesia
[6] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON, Canada
[7] Gdansk Univ Technol, Fac Mech Engn & Ship Technol, Gabriela Narutowicza 11-12, PL-80233 Gdansk, Poland
[8] Auckland Univ Technol, Dept Mech Engn, Auckland, New Zealand
关键词
Inconel; 718; Zirconia; Additive manufacturing; Laser powder bed fusion; MECHANICAL-PROPERTIES; 718; SUPERALLOY; MICROSTRUCTURE; PARAMETERS;
D O I
10.1007/s40964-025-01044-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the integration of zirconia (ZrO2) as a reinforcing agent in the Inconel 718 (IN718) matrix to potentially enhance material hardness and high-temperature oxidation resistance. Employing laser powder bed fusion (LPBF), 3D composite parts of IN718-ZrO2 were systematically fabricated, varying the ZrO2 mass. The primary objectives encompass exploring the impact of ZrO2 on the microstructure, micro-hardness, and high-temperature oxidation of the IN718- ZrO2 composite. The research employed comprehensive testing methodologies, including scanning electron microscopy (SEM), micro-Vickers hardness, XRD, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Results elucidated the successful 3D printing of IN718-ZrO2 composites utilizing the LPBF. Notably, defects such as porosity, cracks, lack of fusion, and balling were identified, intensifying with increased ZrO2 content. The composite demonstrated a substantial increase in hardness across all ZrO2 mass variations compared to pure IN718, with 1 wt.% ZrO2 achieving the highest hardness. Furthermore, oxidation resistance exhibited improvement with higher ZrO2 content in the composite. The comprehensive analysis unveils promising opportunities for developing and applying IN718-ZrO2 composites in industries characterized by high-temperature environments and elevated wear conditions. The findings provide valuable insights into optimizing the performance of these composites, thereby contributing to advancements in materials engineering for challenging operational conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Casalino, Giuseppe
    MATERIALS, 2020, 13 (03)
  • [22] Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion
    Bhuwal, Akash Singh
    Pang, Yong
    Maskery, Ian
    Ashcroft, Ian
    Sun, Wei
    Liu, Tao
    ADVANCED ENGINEERING MATERIALS, 2023,
  • [23] Prototyping of nuclear fuel assembly parts by laser powder bed fusion of Inconel 718
    Jeong, Sang Guk
    Kim, Eun Seong
    Ahn, Soung Yeoul
    Chun, Joo Hong
    Ryu, Joo Young
    Woo, Han Gil
    Yoo, Sang Hun
    Kang, Suk Hoon
    Kim, Hyoung Seop
    PROGRESS IN NUCLEAR ENERGY, 2025, 184
  • [24] Impact of zirconia slurry in steel powder on melt pool characteristics in laser powder bed fusion
    Davis, Taylor
    Nelson, Tracy W.
    Crane, Nathan B.
    RAPID PROTOTYPING JOURNAL, 2023, 29 (03) : 626 - 638
  • [25] Effect of Scanning Strategies on the Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
    Liu, Linqing
    Wang, Di
    Yang, Yongqiang
    Wang, Zhi
    Qian, Zeyu
    Wu, Shibiao
    Tang, Jinrong
    Han, Changjun
    Tan, Chaolin
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (05)
  • [26] The effect of build direction and geometric optimization in laser powder bed fusion of Inconel 718 structures with internal channels
    Kasperovich, Galina
    Becker, Ralf
    Artzt, Katia
    Barriobero-Vila, Pere
    Requena, Guillermo
    Haubrich, Jan
    MATERIALS & DESIGN, 2021, 207
  • [27] Effect of powder recycling on room and elevated temperature damage tolerability of Inconel 718 alloy fabricated by laser powder bed fusion
    Choi, Heesoo
    Kim, Sumin
    Goto, Masahiro
    Kim, Sangshik
    MATERIALS CHARACTERIZATION, 2021, 171
  • [28] Effect of forming strategy on surface morphology and properties of zirconia ceramics formed by laser powder bed fusion
    Fang, Bin
    Cheng, Chongqi
    Zhang, Mingyuan
    Fan, Licheng
    CERAMICS INTERNATIONAL, 2024, 50 (08) : 13176 - 13184
  • [29] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [30] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Cordova, Laura
    Sharabian, Elmira
    Farabi, Ehsan
    Gibson, Ian
    Brandt, Milan
    Rolfe, Bernard
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 2345 - 2362