Research on rolling bearing fault diagnosis method based on improved multi-source fusion convolutional neural network

被引:0
|
作者
Shi, Huaitao [1 ]
Sun, Huayang [1 ]
Bai, Xiaotian [1 ]
Song, Zelong [2 ]
Gao, Tianhao [3 ]
机构
[1] Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[3] Shenyang Univ Technol, Sch Mech Engn, Shenyang 110870, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; rolling bearings; multi-source fusion; attention mechanism; CNN;
D O I
10.1088/1361-6501/ad9ca7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As sensor technology advances, the variety and number of sensors increase, leading to the capture of more signals. Existing multi-source fusion methods often face issues such as increased model complexity or the failure to fully utilize the potential correlations among multi-sensor data, thereby affecting the accuracy and reliability of fault diagnosis. To address this issue, this paper proposes a multi-source fusion convolutional neural network (MFCNN) that diagnoses bearing faults by integrating features from multi-source signals. Firstly, multiple convolution blocks with gradually increasing one-dimensional kernel sizes are utilized to extract features from the integrated multi-source data. This approach enhances feature extraction efficiency and simplifies the network architecture. Secondly, a feature fusion based on the convolutional block attention module attention mechanism is proposed, which refines feature representation through channel and spatial attention modules. This makes the model more focused on important information, thereby improving recognition accuracy. The diagnostic capabilities of the proposed MFCNN are evaluated utilizing two datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [42] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [43] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang N.
    Ma P.
    Zhang H.
    Wang C.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358
  • [44] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192
  • [45] Rolling bearing fault study based on an improved multi-scale convolutional recurrent neural network
    Dong, Shaojiang
    Huang, Xiang
    Xia, Zongyou
    Zou, Song
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (20): : 94 - 105
  • [46] Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
    Zhang, Xiong
    Li, Jialu
    Wu, Wenbo
    Dong, Fan
    Wan, Shuting
    ENTROPY, 2023, 25 (05)
  • [47] A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network
    Xue, Feng
    Zhang, Weimin
    Xue, Fei
    Li, Dongdong
    Xie, Shulian
    Fleischer, Juergen
    MEASUREMENT, 2021, 176
  • [48] A Bearing Fault Diagnosis Method Based on Spectrum Map Information Fusion and Convolutional Neural Network
    Wang, Baiyang
    Feng, Guifang
    Huo, Dongyue
    Kang, Yuyun
    PROCESSES, 2022, 10 (07)
  • [49] Lightweight rotating machinery fault diagnosis based on quadratic convolutional neural network and evidence fusion of multi-source sensor information
    Wang, Shanshan
    Han, Wenkang
    Zhang, Hao
    Zeng, Liang
    JOURNAL OF INSTRUMENTATION, 2025, 20 (02):
  • [50] Research on a Bearing Fault Diagnosis Algorithm Based on Convolutional Neural Network
    Bu, Yang
    Dai, Yuquan
    Wang, Ziyu
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 16 - 17