Primal Topological Spaces

被引:0
|
作者
Acharjee, Santanu [1 ]
Ozkoc, Murad [2 ]
Issaka, Faical Yacine [3 ]
机构
[1] Gauhati Univ, Dept Math, Gauhati, Assam, India
[2] Mugla Sitki Kocman Univ, Fac Sci, Dept Math, TR-48000 Mentese Mugla, Turkiye
[3] Mugla Sitki Kocman Univ, Grad Sch Nat & Appl Sci, Math, TR-48000 Mentese Mugla, Turkiye
关键词
Primal; grill; primal topological space; Kuratowski closure axioms; base; COMPACTNESS; EXTENSIONS;
D O I
10.5269/bspm.66792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce a new structure called primal. Primal is the dual structure of grill. Like ideal, the dual of filter, this new structure also generates a new topology named primal topology. We introduce a new operator using primal, which satisfies Kuratowski closure axioms. Mainly, we prove that primal topology is finer than the topology of a primal topological space. Also, we provide the structure of the base of primal topology and prove other fundamental results related to this new structure. Furthermore, we not only discuss some of this new structure's properties but also enrich it with many examples.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Cycle spaces in topological spaces
    Vella, Antoine
    Richter, R. Bruce
    JOURNAL OF GRAPH THEORY, 2008, 59 (02) : 115 - 144
  • [22] TOPOLOGICAL SPACES
    CORNETTE, JL
    SCIENCE, 1965, 148 (3677) : 1583 - &
  • [23] TOPOLOGICAL DUALITY FOR PRIMAL ALGEBRA THEORY - PRELIMINARY REPORT
    HU, TK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 97 - &
  • [24] R-topological spaces andSR-topological spaces with their applications
    Khalehoghli, Siamak
    Rahimi, Hamidreza
    Eshaghi Gordji, Majid
    MATHEMATICAL SCIENCES, 2020, 14 (03) : 249 - 255
  • [25] R-topological spaces and SR-topological spaces with their applications
    Siamak Khalehoghli
    Hamidreza Rahimi
    Majid Eshaghi Gordji
    Mathematical Sciences, 2020, 14 : 249 - 255
  • [26] Generalized topological function spaces and a classification of generalized computer topological spaces
    Georgiou, D. N.
    Han, Sang-Eon
    FILOMAT, 2012, 26 (03) : 539 - 552
  • [27] I(L)-topological vector spaces and its level topological spaces
    Yan, CH
    Fang, JX
    FUZZY SETS AND SYSTEMS, 2005, 149 (03) : 485 - 492
  • [28] On the Level Spaces of Fuzzy Topological Spaces
    Benchalli, S. S.
    Siddapur, G. P.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 1 (02): : 57 - 65
  • [29] MEASURES ON TOPOLOGICAL SPACES
    KNOWLES, JD
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1967, 17 : 139 - &
  • [30] Ultracomplete Topological Spaces
    D. Bijagoar
    I. Yoshioka
    Acta Mathematica Hungarica, 2001, 92 : 19 - 26