HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs

被引:0
|
作者
Panda, Pranoy [1 ]
Agarwal, Ankush [1 ]
Devaguptapu, Chaitanya [1 ]
Kaul, Manohar [1 ]
Prathosh, A. P. [1 ,2 ]
机构
[1] Fujitsu Res India, Bengaluru, India
[2] Indian Inst Sci, Bengaluru, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given unstructured text, Large Language Models (LLMs) are adept at answering simple (single-hop) questions. However, as the complexity of the questions increase, the performance of LLMs degrade. We believe this is due to the overhead associated with understanding the complex question followed by filtering and aggregating unstructured information in the raw text. Recent methods try to reduce this burden by integrating structured knowledge triples into the raw text, aiming to provide a structured overview that simplifies information processing. However, this simplistic approach is query-agnostic and the extracted facts are ambiguous as they lack context. To address these drawbacks and to enable LLMs to answer complex (multi-hop) questions with ease, we propose to use a knowledge graph (KG) that is context-aware and is distilled to contain query-relevant information. The use of our compressed distilled KG as input to the LLM results in our method utilizing up to 67% fewer tokens to represent the query relevant information present in the supporting documents, compared to the state-of-the-art (SoTA) method. Our experiments show consistent improvements over the SoTA across several metrics (EM, F1, BERTScore, and Human Eval) on two popular benchmark datasets (HotpotQA and MuSiQue).
引用
收藏
页码:13263 / 13282
页数:20
相关论文
共 50 条
  • [31] Multi-hop knowledge graph question answering based on deformed graph matching
    Li X.
    Fang Q.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 529 - 534
  • [32] A dynamic graph expansion network for multi-hop knowledge base question answering
    Wu, Wenqing
    Zhu, Zhenfang
    Qi, Jiangtao
    Wang, Wenling
    Zhang, Guangyuan
    Liu, Peiyu
    NEUROCOMPUTING, 2023, 515 : 37 - 47
  • [33] Multi-hop Knowledge Base Question Answering with an Iterative Sequence Matching Model
    Lan, Yunshi
    Wang, Shuohang
    Jiang, Jing
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 359 - 368
  • [34] Question Calibration and Multi-Hop Modeling for Temporal Question Answering
    Xue, Chao
    Liang, Di
    Wang, Pengfei
    Zhang, Jing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17, 2024, : 19332 - 19340
  • [35] Ask to Understand: Question Generation for Multi-hop Question Answering
    Li, Jiawei
    Ren, Mucheng
    Gao, Yang
    Yang, Yizhe
    CHINESE COMPUTATIONAL LINGUISTICS, CCL 2023, 2023, 14232 : 19 - 36
  • [36] Multi-hop Question Answering with Knowledge Graph Embedding in a Similar Semantic Space
    Li, Fengying
    Chen, Mingdong
    Dong, Rongsheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] Counterfactual-Augmented Data for Multi-Hop Knowledge Base Question Answering
    Li, Yingting
    WEB CONFERENCE 2021: COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2021), 2021, : 719 - 720
  • [38] Knowledge Graph Relation Path Network for Multi-Hop Intelligent Question Answering
    Zhang Y.-M.
    Ji Q.
    Xu X.-S.
    Cheng Z.-B.
    Xiao G.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (11): : 3092 - 3099
  • [39] Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
    Zhang, Jing
    Zhang, Xiaokang
    Yu, Jifan
    Tang, Jian
    Tang, Jie
    Li, Cuiping
    Chen, Hong
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5773 - 5784
  • [40] Structural Optimization and Sequence Interaction Enhancement for Hyper-Relational Knowledge Graphs
    Li, Wang
    Zhou, Yuan
    Han, Delong
    Feng, Zhengqian
    Zhou, Mingle
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 261 - 273