Exploring covalent organic frameworks as high-capacity and long-cycling anode materials for lithium-ion batteries

被引:0
|
作者
Huang, Qidi [1 ]
Chen, Jianai [1 ]
Chang, Yuchen [1 ]
Yang, Lei [1 ]
Shi, Hongliang [1 ]
Shao, Xiongchao [1 ]
Wu, Qida [1 ]
Dong, Yujie [1 ]
Li, Weijun [1 ]
Zhang, Cheng [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Int Sci & Tech Cooperat Base Energy Mat & Applicat, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic framework; COF@CNT; Lithium-ion battery; Anode; High-performance; HIGH-ENERGY; POWER;
D O I
10.1016/j.jcis.2024.12.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is essential to advance the development of lithium-ion batteries (LIBs) characterized by high specific capacity and extended cycle life. Covalent organic frameworks (COFs) have emerged as pivotal materials in achieving this objective due to their long-range ordered porous structures and ease of modification. In this work, we designed and synthesized two types of (3-ketoenamine-linked COFs, namely TP-3J-COF and TP-3Q-COF, which incorporate multiple redox sites. These COFs were subsequently applied to the anode of LIBs, resulting in the successful fabrication of batteries that demonstrate both high specific capacity and prolonged cycle life. Furthermore, we prepared two composites by in situ growth of COFs on carbon nanotubes (CNTs). The synergistic interaction between the COFs and CNTs enabled the TP-3J-COF@CNT and TP-3Q-COF@CNT composites to achieve maximum specific capacities of 1020 mAh g- 1 and 731 mAh g-1, respectively, along with cycle lives exceeding 1400 and 3000 cycles. This research underscores the efficacy of the strategy involving the construction of COFs with multiple redox-active units and their composite formation with CNTs as a robust approach for the development of high-performance LIBs.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [41] High-capacity nanocarbon anodes for lithium-ion batteries
    Zhang, Haitao
    Sun, Xianzhong
    Zhang, Xiong
    Lin, He
    Wang, Kai
    Ma, Yanwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 783 - 788
  • [42] Graphene as a high-capacity anode material for lithium ion batteries
    Liu Hongdong
    Huang Jiamu
    Li Xinlu
    Liu Jia
    Zhang Yuxin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (02): : 220 - 223
  • [43] Graphene as a high-capacity anode material for lithium ion batteries
    Hongdong Liu
    Jiamu Huang
    Xinlu Li
    Jia Liu
    Yuxin Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 220 - 223
  • [44] Mesoporous Manganese Sulfide Spheres Anchored on Graphene Sheets as High-Capacity and Long-Life Anode Materials for Lithium-Ion Batteries
    Chen, Dezhi
    Quan, Hongying
    Huang, Zhongning
    Guo, Lin
    CHEMELECTROCHEM, 2015, 2 (09): : 1314 - 1320
  • [45] Metal-Organic Framework as Anode Materials for Lithium-Ion Batteries with High Capacity and Rate Performance
    Yin, Chengjie
    Xu, Linfeng
    Pan, Yusong
    Pan, Chengling
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11): : 10776 - 10786
  • [46] Lithium molybdate composited with carbon nanofibers as a high-capacity and stable anode material for lithium-ion batteries
    Wang, Jiaqi
    Yao, Junyi
    Li, Wanying
    Zhu, Wenhao
    Yang, Jie
    Zhao, Jianqing
    Gao, Lijun
    ENERGY MATERIALS, 2022, 2 (04):
  • [47] Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries
    Wang, Zhaolei
    Li, Yongjun
    Liu, Pengju
    Qi, Qiaoyan
    Zhang, Fang
    Lu, Guolin
    Zhao, Xin
    Huang, Xiaoyu
    NANOSCALE, 2019, 11 (12) : 5330 - 5335
  • [48] Long-term cycling stability of a SnS2-based covalent organic nanosheet anode for lithium-ion batteries
    Jang, Jeong-Hun
    Lee, Minseop
    Park, Soohyeon
    Oh, Jae-Min
    Park, Jin Kuen
    Paek, Seung-Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (25) : 13320 - 13330
  • [49] Nanoporous germanium as high-capacity lithium-ion battery anode
    Liu, Shuai
    Feng, Jinkui
    Bian, Xiufang
    Qian, Yitai
    Liu, Jie
    Xu, Hui
    NANO ENERGY, 2015, 13 : 651 - 657
  • [50] High-Capacity Anode Materials for Sodium-Ion Batteries
    Kim, Youngjin
    Ha, Kwang-Ho
    Oh, Seung M.
    Lee, Kyu Tae
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (38) : 11980 - 11992