Auto-Regressive RF Synchronization Using Deep-Learning

被引:0
|
作者
Petry, Michael [1 ,2 ]
Parlier, Benjamin [1 ,3 ]
Koch, Andreas [1 ,2 ]
Werner, Martin [2 ]
机构
[1] Airbus Def & Space GmbH, Wunstorf, Germany
[2] Tech Univ Munich, Munich, Germany
[3] Rhein Westfal TH Aachen, Aachen, Germany
关键词
RF synchronization; algorithm; auto-regressive; machine learning; sample time offset; center frequency offset; RF front end;
D O I
10.1109/ICMLCN59089.2024.10624754
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a novel pilot-less Deep-Learning-based synchronization mechanism that seamlessly integrates within state-of-the-art auto-encoder-based end-to-end communication systems. By re-using the idea of Radio Transformer Networks, an auto-regressive strategy is designed that learns to estimate and mitigate synchronization-related perturbations for arbitrarily modulated continuous communication, i.e., sample time offset (STO) and carrier frequency offset (CFO). A performance gain of 0.6 dB in the high-SNR regime compared to classic synchronization techniques is demonstrated. The strength of this approach is a shift from sample-by-sample to batch-wise processing according to the ML paradigm, which enables efficient and fast computation required for practical deployment scenarios using hardware-accelerated ML inference engines.
引用
收藏
页码:145 / 150
页数:6
相关论文
共 50 条
  • [41] Color face recognition by auto-regressive moving averaging
    Celenk, M
    Al-Jarrah, I
    CGIV'2002: FIRST EUROPEAN CONFERENCE ON COLOUR IN GRAPHICS, IMAGING, AND VISION, CONFERENCE PROCEEDINGS, 2002, : 321 - 325
  • [42] Locally Hierarchical Auto-Regressive Modeling for Image Generation
    You, Tackgeun
    Kim, Saehoon
    Kim, Chiheon
    Lee, Doyup
    Han, Bohyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] STRUCTURAL INFERENCE FOR LINEAR MODEL WITH AUTO-REGRESSIVE ERROR
    HAQ, MS
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03): : 1144 - &
  • [44] An auto-regressive GLR algorithm for adaptive radar detection
    Sheikhi, A
    Nayebi, MM
    PROCEEDINGS OF THE 1998 IEEE RADAR CONFERENCE: RADARCON 98, 1998, : 287 - 292
  • [45] Network Completion with Auto-regressive Graph Generative Model
    Han, Shiyu
    Liu, Jiaying
    Xu, Bo
    Chi, Lianhua
    Hsu, Ching-Hsien
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 45 - 53
  • [46] CICAAR: Convolutive ICA with an auto-regressive inverse model
    Dyrholm, M
    Hansen, LK
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 594 - 601
  • [47] Estimation of Auto-Regressive models for time series using Binary or Quantized Data
    Auber, R.
    Pouliquen, M.
    Pigeon, E.
    M'Saad, M.
    Gehan, O.
    Chapon, P. A.
    Moussay, S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 581 - 586
  • [48] Auto-regressive neural networks for the modelling of time series
    van den Boogaard, HFP
    Gautam, DK
    Mynett, AE
    HYDROINFORMATICS '98, VOLS 1 AND 2, 1998, : 741 - 748
  • [49] Mixed frequency structural vector auto-regressive models
    Foroni, Claudia
    Marcellino, Massimiliano
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (02) : 403 - 425
  • [50] A new order selection method for auto-regressive processes
    Karimi, M
    Bastani, MH
    OCEANS'98 - CONFERENCE PROCEEDINGS, VOLS 1-3, 1998, : 1413 - 1417