A Dual-Branch Network With Feature Assistance for Automatic Modulation Recognition

被引:0
|
作者
Feng, Yuhang [1 ,2 ]
Duan, Ruifeng [1 ,2 ]
Li, Shurui [3 ]
Cheng, Peng [4 ,5 ]
Liu, Wanchun [6 ]
机构
[1] Beijing Forestry Univ, Sch Informat Sci & Technol, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Sch Artificial Intelligence, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[4] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
[5] Univ Sydney, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Elect Enginnering & Comp Sci, Camperdown, NSW 2308, Australia
基金
北京市自然科学基金;
关键词
Feature extraction; Transformers; Modulation; Correlation; Convolution; Accuracy; Encoding; Data mining; Australia; Training; Automatic modulation recognition; gramian angular field; depthwise separable convolution; transformer; dual-branch network; TRANSFORMER;
D O I
10.1109/LSP.2025.3527901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation recognition (AMR) is a critical technology in wireless communications, aiming to achieve high recognition accuracy with low complexity in increasingly intricate electromagnetic environments. To tackle this challenge, in this paper, we propose a dual-branch convolution cascaded transformer network with feature assistance, termed DCTFANet. To enhance the differentiation between samples, we employ the gramian angular field (GAF) to capture potential temporal correlations between each data point. Subsequently, both I/Q sequences and GAF data are input into the model for joint signal feature extraction. The network backbone is constructed using multiple improved depthwise separable convolution (DSC) blocks, which significantly reduce computational complexity. Moreover, the backbone depth is flexibly adjustable to fully exploit local features of different data types. Finally, feature transition and the transformer encoder are used to reduce parameters and extract global feature. Experimental results on RML2016.10b show that the proposed method achieves higher recognition accuracy compared to several state-of-the-art methods, especially at low signal-to-noise ratios (SNRs), with an increase of at least 10.80% at -20 dB.
引用
收藏
页码:701 / 705
页数:5
相关论文
共 50 条
  • [11] Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition
    Mao, Shasha
    Zhang, Yuanyuan
    Yan, Dandan
    Chen, Puhua
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 566 - 570
  • [12] Dual-Branch Multimodal Fusion Network for Driver Facial Emotion Recognition
    Wang, Le
    Chang, Yuchen
    Wang, Kaiping
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [13] Dual-branch self-attention network for pedestrian attribute recognition
    Liu, Zhenyu
    Zhang, Zhang
    Li, Da
    Zhang, Peng
    Shan, Caifeng
    PATTERN RECOGNITION LETTERS, 2022, 163 : 112 - 120
  • [14] An attention-based RGBD dual-branch gesture recognition network
    Chen, Bo
    Xie, Pengwei
    Hao, Nan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8022 - 8027
  • [15] Contrastive dual-branch network for long-tailed visual recognition
    Miao, Jie
    Zhai, Junhai
    Han, Ling
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [16] A Dual-Branch Dynamic Graph Convolution Based Adaptive TransFormer Feature Fusion Network for EEG Emotion Recognition
    Sun, Mingyi
    Cui, Weigang
    Yu, Shuyue
    Han, Hongbin
    Hu, Bin
    Li, Yang
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 2218 - 2228
  • [17] Dual-branch network with hypergraph feature augmentation and adaptive logits adjustment for long-tailed visual recognition
    Han, Jia-yi
    Liu, Jian-wei
    Xu, Jing-dong
    APPLIED SOFT COMPUTING, 2024, 167
  • [18] Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition
    Zhou, Haoliang
    Huang, Shucheng
    Li, Jingting
    Wang, Su-Jing
    ENTROPY, 2023, 25 (03)
  • [19] A Multiscale Dual-Branch Feature Fusion and Attention Network for Hyperspectral Images Classification
    Gao, Hongmin
    Zhang, Yiyan
    Chen, Zhonghao
    Li, Chenming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8180 - 8192
  • [20] DBIF: Dual-Branch Feature Extraction Network for Infrared and Visible Image Fusion
    Zhang, Haozhe
    Cui, Rongpu
    Zheng, Zhuohang
    Gao, Shaobing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 309 - 323