Synthesis of hydroxyapatite nanocomposite coating by electrodeposition route: a state of the art review

被引:0
|
作者
Karali, Bijay Kumar [1 ]
Das, Satyabati [2 ]
Behera, Gautam [3 ]
Mallik, Manila [3 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bengaluru, India
[2] Indian Inst Technol, Dept Mech Engn, Kanpur, India
[3] Veer Surendra Sai Univ Technol, Dept Met & Mat Engn, Burla 768018, Sambalpur, India
关键词
Hydroxyapatite; biocompatibility; osteoconductivity; electrodeposition; implants; COMPOSITE COATINGS; CORROSION BEHAVIOR; ELECTROPHORETIC DEPOSITION; BIOMEDICAL APPLICATIONS; TITANIUM IMPLANTS; GRAPHENE OXIDE; MG ALLOY; PERFORMANCE; FABRICATION; RESISTANCE;
D O I
10.1080/00084433.2024.2435104
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Hydroxyapatite (HA) is widely employed as a coating on implants due to its biocompatibility. Deposition techniques for HA include sol-gel, sputter coating, vacuum deposition, plasma spraying, hot isostatic pressing, biomimetic deposition, pulsed laser deposition, electrophoretic deposition (EPD), and electrodeposition. Among these, electrodeposition is preferred for its ability to form consistent crystals at low temperatures with minimal stress. However, pure HA coatings often suffer from low bonding strength, limiting mechanical performance. To overcome this, reinforcements, such as metals, polymers, and ceramics, are incorporated to enhance mechanical strength, bioactivity, and antibacterial properties. Researchers have reported that ceramic reinforcements like TiO2 and ZrO2 at concentrations of 3 and 6 mM/L improve HA's mechanical and bioactive properties. Polymer-reinforced composites, such as those with multiwalled carbon nanotubes (MWCNTs), enhance osteoconduction, cytocompatibility, and corrosion resistance, improving implant performance. Metallic reinforcements like Ag and Zn add antibacterial properties, reducing post-implantation infections. These reinforcements collectively address the limitations of pure HA coatings, offering a multifunctional solution for implant applications. This review focuses on the electrodeposition of reinforced HA nanocomposite coatings, emphasising the role of ceramic, polymer, and metallic reinforcements in improving the mechanical, biological, and antibacterial performance of implants, making them effective in biomedical applications. L'hydroxyapatite (HA) est largement utilis & eacute;e comme rev & ecirc;tement sur les implants en raison de son excellente biocompatibilit & eacute;. Diverses techniques de d & eacute;p & ocirc;t d'HA comprennent le sol-gel, le rev & ecirc;tement par pulv & eacute;risation, le d & eacute;p & ocirc;t sous vide, la projection au plasma, le pressage isostatique & agrave; chaud, le d & eacute;p & ocirc;t biomim & eacute;tique, le d & eacute;p & ocirc;t par laser & agrave; impulsions, le d & eacute;p & ocirc;t par & eacute;lectrophor & egrave;se (EPD) et l'& eacute;lectrod & eacute;position. Parmi celles-ci, l'& eacute;lectrod & eacute;position attire l'attention comme une m & eacute;thode attrayante car elle permet une formation constante de cristaux & agrave; basse temp & eacute;rature ou & agrave; temp & eacute;rature ambiante, avec une contrainte r & eacute;siduelle minimale. Cependant, les rev & ecirc;tements de HA purs sur les surfaces m & eacute;talliques souffrent souvent d'une faible force de liaison, limitant leurs performances m & eacute;caniques. Pour r & eacute;soudre ce probl & egrave;me, on utilise couramment des mat & eacute;riaux tels que des m & eacute;taux, des polym & egrave;res et des c & eacute;ramiques comme renforts pour am & eacute;liorer la r & eacute;sistance m & eacute;canique, la bioactivit & eacute; et les propri & eacute;t & eacute;s antibact & eacute;riennes des rev & ecirc;tements de HA. Les chercheurs ont rapport & eacute; que les renforts c & eacute;ramiques tels que TiO2 et ZrO2 & agrave; des concentrations de 3 et 6 mM/L am & eacute;liorent significativement les propri & eacute;t & eacute;s m & eacute;caniques et bioactives de la matrice de HA. En plus, les rev & ecirc;tements composites polym & egrave;res renforc & eacute;s de nanotubes de carbone & agrave; parois multiples (MWCNT) augmentent l'ost & eacute;oconduction, la cytocompatibilit & eacute; et la r & eacute;sistance & agrave; la corrosion, am & eacute;liorant ainsi les performances globales des implants m & eacute;talliques. Les renforts m & eacute;talliques, tels que Ag et Zn, conf & egrave;rent des propri & eacute;t & eacute;s antibact & eacute;riennes, aidant & agrave; pr & eacute;venir les infections apr & egrave;s implantation. En r & eacute;sum & eacute;, cet article passe en revue le d & eacute;p & ocirc;t de rev & ecirc;tements nanocomposites de HA renforc & eacute;s sur les implants m & eacute;talliques utilisant des techniques d'& eacute;lectrod & eacute;position, mettant en lumi & egrave;re les avantages potentiels de l'incorporation de divers renforts pour am & eacute;liorer les performances d'implants en termes de propri & eacute;t & eacute;s m & eacute;caniques, biologiques et antibact & eacute;riennes.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite
    Li, Jiashen
    Liu, Xuan
    Zhang, Jing
    Zhang, Yu
    Han, Yanxia
    Hu, Junyan
    Li, Yi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (04) : 896 - 902
  • [32] The current state-of-the art in pharmaceutical continuous film coating - A review
    Galata, Dorian Laszlo
    Peterfi, Orsolya
    Ficzere, Mate
    Szabo-Szocs, Bence
    Szabo, Edina
    Nagy, Zsombor Kristof
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 669
  • [33] Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite
    Sivaperumal, Vignesh Raj
    Mani, Rajkumar
    Nachiappan, Meenakshi Sundaram
    Arumugam, Kandaswamy
    MATERIALS CHARACTERIZATION, 2017, 134 : 416 - 421
  • [34] HISTORICAL REVIEW AND UPDATE TO THE STATE OF THE ART OF AUTOMATION FOR PLASMA COATING PROCESSES
    MEYER, P
    MUEHLBERGER, S
    THIN SOLID FILMS, 1984, 118 (04) : 445 - 456
  • [35] Properties and Mechanism of Hydroxyapatite Coating Prepared by Electrodeposition on a Braid for Biodegradable Bone Scaffolds
    Li, Ting-Ting
    Ling, Lei
    Lin, Mei-Chen
    Jiang, Qian
    Lin, Qi
    Lin, Jia-Horng
    Lou, Ching-Wen
    NANOMATERIALS, 2019, 9 (05)
  • [36] Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications
    Huang, Yong
    Han, Shuguang
    Pang, Xiaofeng
    Ding, Qionqion
    Yan, Yajing
    APPLIED SURFACE SCIENCE, 2013, 271 : 299 - 302
  • [37] In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method
    Gopi, Dhanaraj
    Karthika, Arumugam
    Nithiya, Subramani
    Kavitha, Louis
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 144 (1-2) : 75 - 85
  • [38] Calcium Phosphate Coating on a Bioresorbable Hydroxyapatite/Collagen Nanocomposite for Surface Functionalization
    Bodhak, Subhadip
    Kikuchi, Masanori
    Sogo, Yu
    Tsurushima, Hideo
    Ito, Atsuo
    Oyane, Ayako
    CHEMISTRY LETTERS, 2013, 42 (09) : 1029 - 1031
  • [39] Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization
    Ryu, Jungki
    Ku, Sook Hee
    Lee, Haeshin
    Park, Chan Beum
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (13) : 2132 - 2139
  • [40] In situ synthesis of hydroxyapatite coating by laser cladding
    Wang, D. G.
    Chen, C. Z.
    Ma, J.
    Zhang, G.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2008, 66 (02) : 155 - 162